Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment

The construction of a three-dimensional (3D) liver tissue is limited by many factors; one of them is the lack of vascularization inside the tissue-engineered construct. An engineered liver pocket-scaffold able to increase neo-angiogenesis in vivo could be a solution to overcome these limitations. In...

Full description

Bibliographic Details
Main Authors: Amedeo Carraro, Maurizio Buggio, Chiara Gardin, Umberto Tedeschi, Letizia Ferroni, Barbara Zavan
Format: Article
Language:English
Published: MDPI AG 2016-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/17/3/374
Description
Summary:The construction of a three-dimensional (3D) liver tissue is limited by many factors; one of them is the lack of vascularization inside the tissue-engineered construct. An engineered liver pocket-scaffold able to increase neo-angiogenesis in vivo could be a solution to overcome these limitations. In this work, a hyaluronan (HA)-based scaffold enriched with human mesenchymal stem cells (hMSCs) and rat hepatocytes was pre-conditioned in a bioreactor system, then implanted into the liver of rats. Angiogenesis and hepatocyte metabolic functions were monitored. The formation of a de novo vascular network within the HA-based scaffold, as well as an improvement in albumin production by the implanted hepatocytes, were detected. The presence of hMSCs in the HA-scaffold increased the concentration of growth factors promoting angiogenesis inside the graft. This event ensured a high blood vessel density, coupled with a support to metabolic functions of hepatocytes. All together, these results highlight the important role played by stem cells in liver tissue-engineered engraftment.
ISSN:1422-0067