Feedforward Chaotic Neural Network Model for Rotor Rub-Impact Fault Recognition Using Acoustic Emission Method
The rubbing faults caused by dynamic and static components in large rotatory machine are dangerous in manufacture process. This paper applies a feedforward chaotic neural network (FCNN) to recognize acoustic emission (AE) source in rotor rubbing and diagnose the rotor operational condition. This met...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Electrical and Computer Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/9718951 |
Summary: | The rubbing faults caused by dynamic and static components in large rotatory machine are dangerous in manufacture process. This paper applies a feedforward chaotic neural network (FCNN) to recognize acoustic emission (AE) source in rotor rubbing and diagnose the rotor operational condition. This method adds the dynamic chaotic neurons based on logistic mapping into the multilayer perceptron (MLP) model to avoid the network falling into a local minimum, the delayed and feedback structure for maximum efficiency of recognition performance. The AE data was rotor rubbing process sampled from the test rig of rotatory machine, classification by fault degree. The experimental results indicate that the recognition rate is superior to the traditional BP network models. It is an effective method to recognize the rubbing faults for the machine normal operation. |
---|---|
ISSN: | 2090-0147 2090-0155 |