Spreadsheet-based modelling of hysteresis-affected curves

Abstract Design, operation and management of water resource projects are influenced by the amount of discharge passing through the stream. Discharge at the gauging site is generally estimated by developing single-valued simple rating curves. However, in case of unsteady flows, hysteresis affect is i...

Full description

Bibliographic Details
Main Author: Mohammad Zakwan
Format: Article
Language:English
Published: SpringerOpen 2018-06-01
Series:Applied Water Science
Subjects:
GRG
Online Access:http://link.springer.com/article/10.1007/s13201-018-0745-3
Description
Summary:Abstract Design, operation and management of water resource projects are influenced by the amount of discharge passing through the stream. Discharge at the gauging site is generally estimated by developing single-valued simple rating curves. However, in case of unsteady flows, hysteresis affect is introduced in the stage discharge relationship and as such single-valued rating curves are no longer valid for such situations. The present paper presents a simple spreadsheet-based optimization approach for modelling the hysteresis-affected discharge rating curves. Generalized reduced gradient (GRG) technique has been reported as a reliable tool for handling optimization problems; therefore, in the present paper, it has been applied to estimate discharge for two sites with hysteresis affect based on Jones formula. Comparison of results shows that discharge estimated by GRG technique is as efficient as genetic algorithm and the goodness-of-fit criteria shows that the rating curves obtained by using Jones formula fit the observed data better than single-valued simple rating curves for both the sites considered in the present study. Application of spreadsheet-based GRG optimization technique could prove very helpful to the hydrometric offices.
ISSN:2190-5487
2190-5495