Laser-plasma interaction physics for shock ignition

In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond) pulse before creating a convergent shock with a short (∼100 ps) pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2) above LPI (Laser Plasma Instabilities) thresholds. The...

Full description

Bibliographic Details
Main Authors: Goyon C., Depierreux S., Michel D.T., Loisel G., Yahia V., Masson-Laborde P.E., Loiseau P., Hüller S., Borisenko N.G., Orekhov A., Rosmej O., Nicolaï P., Tikhonchuk V.T., Labaune C.
Format: Article
Language:English
Published: EDP Sciences 2013-11-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20135905006
id doaj-6ec7a507129d4bcfb18526b98cac67ae
record_format Article
spelling doaj-6ec7a507129d4bcfb18526b98cac67ae2021-08-02T01:37:18ZengEDP SciencesEPJ Web of Conferences2100-014X2013-11-01590500610.1051/epjconf/20135905006Laser-plasma interaction physics for shock ignitionGoyon C.Depierreux S.Michel D.T.Loisel G.Yahia V.Masson-Laborde P.E.Loiseau P.Hüller S.Borisenko N.G.Orekhov A.Rosmej O.Nicolaï P.Tikhonchuk V.T.Labaune C.In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond) pulse before creating a convergent shock with a short (∼100 ps) pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2) above LPI (Laser Plasma Instabilities) thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV) and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω) and the LULI2000 (0.4 kJ at 2ω) facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition. http://dx.doi.org/10.1051/epjconf/20135905006
collection DOAJ
language English
format Article
sources DOAJ
author Goyon C.
Depierreux S.
Michel D.T.
Loisel G.
Yahia V.
Masson-Laborde P.E.
Loiseau P.
Hüller S.
Borisenko N.G.
Orekhov A.
Rosmej O.
Nicolaï P.
Tikhonchuk V.T.
Labaune C.
spellingShingle Goyon C.
Depierreux S.
Michel D.T.
Loisel G.
Yahia V.
Masson-Laborde P.E.
Loiseau P.
Hüller S.
Borisenko N.G.
Orekhov A.
Rosmej O.
Nicolaï P.
Tikhonchuk V.T.
Labaune C.
Laser-plasma interaction physics for shock ignition
EPJ Web of Conferences
author_facet Goyon C.
Depierreux S.
Michel D.T.
Loisel G.
Yahia V.
Masson-Laborde P.E.
Loiseau P.
Hüller S.
Borisenko N.G.
Orekhov A.
Rosmej O.
Nicolaï P.
Tikhonchuk V.T.
Labaune C.
author_sort Goyon C.
title Laser-plasma interaction physics for shock ignition
title_short Laser-plasma interaction physics for shock ignition
title_full Laser-plasma interaction physics for shock ignition
title_fullStr Laser-plasma interaction physics for shock ignition
title_full_unstemmed Laser-plasma interaction physics for shock ignition
title_sort laser-plasma interaction physics for shock ignition
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2013-11-01
description In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond) pulse before creating a convergent shock with a short (∼100 ps) pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2) above LPI (Laser Plasma Instabilities) thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV) and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω) and the LULI2000 (0.4 kJ at 2ω) facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.
url http://dx.doi.org/10.1051/epjconf/20135905006
work_keys_str_mv AT goyonc laserplasmainteractionphysicsforshockignition
AT depierreuxs laserplasmainteractionphysicsforshockignition
AT micheldt laserplasmainteractionphysicsforshockignition
AT loiselg laserplasmainteractionphysicsforshockignition
AT yahiav laserplasmainteractionphysicsforshockignition
AT massonlabordepe laserplasmainteractionphysicsforshockignition
AT loiseaup laserplasmainteractionphysicsforshockignition
AT hullers laserplasmainteractionphysicsforshockignition
AT borisenkong laserplasmainteractionphysicsforshockignition
AT orekhova laserplasmainteractionphysicsforshockignition
AT rosmejo laserplasmainteractionphysicsforshockignition
AT nicolaip laserplasmainteractionphysicsforshockignition
AT tikhonchukvt laserplasmainteractionphysicsforshockignition
AT labaunec laserplasmainteractionphysicsforshockignition
_version_ 1721244608035291136