AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics

We report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping eff...

Full description

Bibliographic Details
Main Authors: Justinas Jorudas, Artūr Šimukovič, Maksym Dub, Maciej Sakowicz, Paweł Prystawko, Simonas Indrišiūnas, Vitalij Kovalevskij, Sergey Rumyantsev, Wojciech Knap, Irmantas Kašalynas
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Micromachines
Subjects:
SiC
Online Access:https://www.mdpi.com/2072-666X/11/12/1131
id doaj-6ec2e3a2a5904a008f738fa7924af970
record_format Article
spelling doaj-6ec2e3a2a5904a008f738fa7924af9702020-12-21T00:02:15ZengMDPI AGMicromachines2072-666X2020-12-01111131113110.3390/mi11121131AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise CharacteristicsJustinas Jorudas0Artūr Šimukovič1Maksym Dub2Maciej Sakowicz3Paweł Prystawko4Simonas Indrišiūnas5Vitalij Kovalevskij6Sergey Rumyantsev7Wojciech Knap8Irmantas Kašalynas9Center for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaWe report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects. Fabricated Schottky barrier diodes (SBDs) demonstrated an ideality factor <i>n</i> at approximately 1.7 and breakdown voltages (fields) up to 780 V (approximately 0.8 MV/cm). Hall measurements revealed a thermally stable electron density at <i>N<sub>2DEG</sub></i> =1 × 10<sup>13</sup> cm<sup>−2</sup> of two-dimensional electron gas in the range of 77–300 K, with mobilities <i>μ</i> = 1.7∙10<sup>3</sup> cm<sup>2</sup>/V∙s and <i>μ</i> = 1.0∙10<sup>4</sup> cm<sup>2</sup>/V∙s at 300 K and 77 K, respectively. The maximum drain current and the transconductance were demonstrated to be as high as 0.5 A/mm and 150 mS/mm, respectively, for the transistors with gate length <i>L<sub>G</sub></i> = 5 μm. Low-frequency noise measurements demonstrated an effective trap density below 10<sup>19</sup> cm<sup>-3</sup>eV<sup>-1</sup>. RF analysis revealed <i>f<sub>T</sub></i> and <i>f<sub>max</sub></i> values up to 1.3 GHz and 6.7 GHz, respectively, demonstrating figures of merit <i>f<sub>T</sub></i> × <i>L<sub>G</sub></i> up to 6.7 GHz×µm. These data further confirm the high potential of a GaN–SiC hybrid material for the development of thin high electron mobility transistors (HEMTs) and SBDs with improved thermal stability for high-frequency and high-power applications.https://www.mdpi.com/2072-666X/11/12/1131AlGaN/GaNSiChigh electron mobility transistorSchottky barrier diodebreakdown fieldnoise
collection DOAJ
language English
format Article
sources DOAJ
author Justinas Jorudas
Artūr Šimukovič
Maksym Dub
Maciej Sakowicz
Paweł Prystawko
Simonas Indrišiūnas
Vitalij Kovalevskij
Sergey Rumyantsev
Wojciech Knap
Irmantas Kašalynas
spellingShingle Justinas Jorudas
Artūr Šimukovič
Maksym Dub
Maciej Sakowicz
Paweł Prystawko
Simonas Indrišiūnas
Vitalij Kovalevskij
Sergey Rumyantsev
Wojciech Knap
Irmantas Kašalynas
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
Micromachines
AlGaN/GaN
SiC
high electron mobility transistor
Schottky barrier diode
breakdown field
noise
author_facet Justinas Jorudas
Artūr Šimukovič
Maksym Dub
Maciej Sakowicz
Paweł Prystawko
Simonas Indrišiūnas
Vitalij Kovalevskij
Sergey Rumyantsev
Wojciech Knap
Irmantas Kašalynas
author_sort Justinas Jorudas
title AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
title_short AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
title_full AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
title_fullStr AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
title_full_unstemmed AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
title_sort algan/gan on sic devices without a gan buffer layer: electrical and noise characteristics
publisher MDPI AG
series Micromachines
issn 2072-666X
publishDate 2020-12-01
description We report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects. Fabricated Schottky barrier diodes (SBDs) demonstrated an ideality factor <i>n</i> at approximately 1.7 and breakdown voltages (fields) up to 780 V (approximately 0.8 MV/cm). Hall measurements revealed a thermally stable electron density at <i>N<sub>2DEG</sub></i> =1 × 10<sup>13</sup> cm<sup>−2</sup> of two-dimensional electron gas in the range of 77–300 K, with mobilities <i>μ</i> = 1.7∙10<sup>3</sup> cm<sup>2</sup>/V∙s and <i>μ</i> = 1.0∙10<sup>4</sup> cm<sup>2</sup>/V∙s at 300 K and 77 K, respectively. The maximum drain current and the transconductance were demonstrated to be as high as 0.5 A/mm and 150 mS/mm, respectively, for the transistors with gate length <i>L<sub>G</sub></i> = 5 μm. Low-frequency noise measurements demonstrated an effective trap density below 10<sup>19</sup> cm<sup>-3</sup>eV<sup>-1</sup>. RF analysis revealed <i>f<sub>T</sub></i> and <i>f<sub>max</sub></i> values up to 1.3 GHz and 6.7 GHz, respectively, demonstrating figures of merit <i>f<sub>T</sub></i> × <i>L<sub>G</sub></i> up to 6.7 GHz×µm. These data further confirm the high potential of a GaN–SiC hybrid material for the development of thin high electron mobility transistors (HEMTs) and SBDs with improved thermal stability for high-frequency and high-power applications.
topic AlGaN/GaN
SiC
high electron mobility transistor
Schottky barrier diode
breakdown field
noise
url https://www.mdpi.com/2072-666X/11/12/1131
work_keys_str_mv AT justinasjorudas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT artursimukovic alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT maksymdub alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT maciejsakowicz alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT pawełprystawko alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT simonasindrisiunas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT vitalijkovalevskij alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT sergeyrumyantsev alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT wojciechknap alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
AT irmantaskasalynas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics
_version_ 1724375963126464512