AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics
We report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping eff...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/11/12/1131 |
id |
doaj-6ec2e3a2a5904a008f738fa7924af970 |
---|---|
record_format |
Article |
spelling |
doaj-6ec2e3a2a5904a008f738fa7924af9702020-12-21T00:02:15ZengMDPI AGMicromachines2072-666X2020-12-01111131113110.3390/mi11121131AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise CharacteristicsJustinas Jorudas0Artūr Šimukovič1Maksym Dub2Maciej Sakowicz3Paweł Prystawko4Simonas Indrišiūnas5Vitalij Kovalevskij6Sergey Rumyantsev7Wojciech Knap8Irmantas Kašalynas9Center for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandInstitute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-142 Warsaw, PolandCenter for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, LithuaniaWe report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects. Fabricated Schottky barrier diodes (SBDs) demonstrated an ideality factor <i>n</i> at approximately 1.7 and breakdown voltages (fields) up to 780 V (approximately 0.8 MV/cm). Hall measurements revealed a thermally stable electron density at <i>N<sub>2DEG</sub></i> =1 × 10<sup>13</sup> cm<sup>−2</sup> of two-dimensional electron gas in the range of 77–300 K, with mobilities <i>μ</i> = 1.7∙10<sup>3</sup> cm<sup>2</sup>/V∙s and <i>μ</i> = 1.0∙10<sup>4</sup> cm<sup>2</sup>/V∙s at 300 K and 77 K, respectively. The maximum drain current and the transconductance were demonstrated to be as high as 0.5 A/mm and 150 mS/mm, respectively, for the transistors with gate length <i>L<sub>G</sub></i> = 5 μm. Low-frequency noise measurements demonstrated an effective trap density below 10<sup>19</sup> cm<sup>-3</sup>eV<sup>-1</sup>. RF analysis revealed <i>f<sub>T</sub></i> and <i>f<sub>max</sub></i> values up to 1.3 GHz and 6.7 GHz, respectively, demonstrating figures of merit <i>f<sub>T</sub></i> × <i>L<sub>G</sub></i> up to 6.7 GHz×µm. These data further confirm the high potential of a GaN–SiC hybrid material for the development of thin high electron mobility transistors (HEMTs) and SBDs with improved thermal stability for high-frequency and high-power applications.https://www.mdpi.com/2072-666X/11/12/1131AlGaN/GaNSiChigh electron mobility transistorSchottky barrier diodebreakdown fieldnoise |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Justinas Jorudas Artūr Šimukovič Maksym Dub Maciej Sakowicz Paweł Prystawko Simonas Indrišiūnas Vitalij Kovalevskij Sergey Rumyantsev Wojciech Knap Irmantas Kašalynas |
spellingShingle |
Justinas Jorudas Artūr Šimukovič Maksym Dub Maciej Sakowicz Paweł Prystawko Simonas Indrišiūnas Vitalij Kovalevskij Sergey Rumyantsev Wojciech Knap Irmantas Kašalynas AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics Micromachines AlGaN/GaN SiC high electron mobility transistor Schottky barrier diode breakdown field noise |
author_facet |
Justinas Jorudas Artūr Šimukovič Maksym Dub Maciej Sakowicz Paweł Prystawko Simonas Indrišiūnas Vitalij Kovalevskij Sergey Rumyantsev Wojciech Knap Irmantas Kašalynas |
author_sort |
Justinas Jorudas |
title |
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics |
title_short |
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics |
title_full |
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics |
title_fullStr |
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics |
title_full_unstemmed |
AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics |
title_sort |
algan/gan on sic devices without a gan buffer layer: electrical and noise characteristics |
publisher |
MDPI AG |
series |
Micromachines |
issn |
2072-666X |
publishDate |
2020-12-01 |
description |
We report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects. Fabricated Schottky barrier diodes (SBDs) demonstrated an ideality factor <i>n</i> at approximately 1.7 and breakdown voltages (fields) up to 780 V (approximately 0.8 MV/cm). Hall measurements revealed a thermally stable electron density at <i>N<sub>2DEG</sub></i> =1 × 10<sup>13</sup> cm<sup>−2</sup> of two-dimensional electron gas in the range of 77–300 K, with mobilities <i>μ</i> = 1.7∙10<sup>3</sup> cm<sup>2</sup>/V∙s and <i>μ</i> = 1.0∙10<sup>4</sup> cm<sup>2</sup>/V∙s at 300 K and 77 K, respectively. The maximum drain current and the transconductance were demonstrated to be as high as 0.5 A/mm and 150 mS/mm, respectively, for the transistors with gate length <i>L<sub>G</sub></i> = 5 μm. Low-frequency noise measurements demonstrated an effective trap density below 10<sup>19</sup> cm<sup>-3</sup>eV<sup>-1</sup>. RF analysis revealed <i>f<sub>T</sub></i> and <i>f<sub>max</sub></i> values up to 1.3 GHz and 6.7 GHz, respectively, demonstrating figures of merit <i>f<sub>T</sub></i> × <i>L<sub>G</sub></i> up to 6.7 GHz×µm. These data further confirm the high potential of a GaN–SiC hybrid material for the development of thin high electron mobility transistors (HEMTs) and SBDs with improved thermal stability for high-frequency and high-power applications. |
topic |
AlGaN/GaN SiC high electron mobility transistor Schottky barrier diode breakdown field noise |
url |
https://www.mdpi.com/2072-666X/11/12/1131 |
work_keys_str_mv |
AT justinasjorudas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT artursimukovic alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT maksymdub alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT maciejsakowicz alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT pawełprystawko alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT simonasindrisiunas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT vitalijkovalevskij alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT sergeyrumyantsev alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT wojciechknap alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics AT irmantaskasalynas alganganonsicdeviceswithoutaganbufferlayerelectricalandnoisecharacteristics |
_version_ |
1724375963126464512 |