Fluorometric In Situ Monitoring of an Escherichia coli Cell Factory with Cytosolic Expression of Human Glycosyltransferase GalNAcT2: Prospects and Limitations

The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli) SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but is a cr...

Full description

Bibliographic Details
Main Authors: Karen Schwab, Jennifer Lauber, Friedemann Hesse
Format: Article
Language:English
Published: MDPI AG 2016-11-01
Series:Bioengineering
Subjects:
Online Access:http://www.mdpi.com/2306-5354/3/4/32
Description
Summary:The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli) SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but is a critical process parameter. Therefore, it has to be monitored closely. This study evaluates fluorometric in situ monitoring as option to access this critical process parameter during complex E. coli fermentations. Partial least square regression (PLS) models were built based on the fluorometric data recorded during the EnPresso® B fermentations. Capable models for the prediction of glucose and acetate concentrations were built for these fermentations with rout mean squared errors for prediction (RMSEP) of 0.19 g·L−1 and 0.08 g·L−1, as well as for the prediction of the optical density (RMSEP 0.24). In situ monitoring of soluble enzyme to cell dry weight ratios (RMSEP 5.5 × 10−4 µg w/w) and specific activity of the glycosyltransferase (RMSEP 33.5 pmol·min−1·µg−1) proved to be challenging, since HisDapGalNAcT2 had to be extracted from the cells and purified. However, fluorescence spectroscopy, in combination with PLS modeling, proved to be feasible for in situ monitoring of complex expression systems.
ISSN:2306-5354