The inverse problem in zero linear ablation of aluminizing carbon composites under high heat flux

The concept of zero linear ablation is introduced to describe the mass ablation without shape change, and it is employed to design thermal protection materials under an extreme thermal environment. Aluminizing carbon composites are used as a sample to study numerically the heat response. As...

Full description

Bibliographic Details
Main Authors: Huang Haiming, Li Weijie, Xu Chenghai, Xu Xiaoliang
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2013-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2013/0354-98361305323H.pdf
Description
Summary:The concept of zero linear ablation is introduced to describe the mass ablation without shape change, and it is employed to design thermal protection materials under an extreme thermal environment. Aluminizing carbon composites are used as a sample to study numerically the heat response. As indicated in the numerical results, the shape of the composites did not change under a high heat flux because the phase transition (melt or evaporation) of aluminum can absorb a lot of energy before the ablation of carbon, and the zero linear ablation depends on not only the volume fraction of aluminum, but also the heating period and the heat flux.
ISSN:0354-9836