Dynamic recrystallization behavior of the Ta-containing TiAl alloy in isothermal deformation
The dynamic recrystallization behavior of as-cast Ti-46.5Al-3Ta-2Cr-0.2W alloy during isothermal compression process with nominal deformation of 50% and strain rates from 0.01s to 1s was investigated by electron microscopy. The results showed that the deformation mechanism of this alloy can be concl...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | MATEC Web of Conferences |
Subjects: | |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2020/17/matecconf_ti2019_12008.pdf |
Summary: | The dynamic recrystallization behavior of as-cast Ti-46.5Al-3Ta-2Cr-0.2W alloy during isothermal compression process with nominal deformation of 50% and strain rates from 0.01s to 1s was investigated by electron microscopy. The results showed that the deformation mechanism of this alloy can be concluded as grain boundary sliding and mechanical twins, which induce the final dynamic recrystallization. The phase boundary bulging was found to be the major nucleation mechanism responsible for the lamellar globularization and the formation of recrystallized γ grains inside the lamellar colony under the high strain rate. The recrystallized γ grains induced by the twinning is the main mechanism for refining α2 lamellar microstructures under low strain rate. |
---|---|
ISSN: | 2261-236X |