New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method

This paper presents new short decryption exponent attacks on RSA, which successfully leads to the factorization of RSA modulus <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>p</mi> <mi>...

Full description

Bibliographic Details
Main Authors: Muhammad Rezal Kamel Ariffin, Saidu Isah Abubakar, Faridah Yunos, Muhammad Asyraf Asbullah
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Cryptography
Subjects:
Online Access:https://www.mdpi.com/2410-387X/3/1/2
id doaj-6e6be974c7b74e97b1fc09efa1befe04
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Muhammad Rezal Kamel Ariffin
Saidu Isah Abubakar
Faridah Yunos
Muhammad Asyraf Asbullah
spellingShingle Muhammad Rezal Kamel Ariffin
Saidu Isah Abubakar
Faridah Yunos
Muhammad Asyraf Asbullah
New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
Cryptography
RSA modulus
primes difference
cryptanalysis
short decryption exponent
attacks
continued fraction
author_facet Muhammad Rezal Kamel Ariffin
Saidu Isah Abubakar
Faridah Yunos
Muhammad Asyraf Asbullah
author_sort Muhammad Rezal Kamel Ariffin
title New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
title_short New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
title_full New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
title_fullStr New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
title_full_unstemmed New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference Method
title_sort new cryptanalytic attack on rsa modulus <i>n</i> = <i>pq</i> using small prime difference method
publisher MDPI AG
series Cryptography
issn 2410-387X
publishDate 2018-12-01
description This paper presents new short decryption exponent attacks on RSA, which successfully leads to the factorization of RSA modulus <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>p</mi> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> in polynomial time. The paper has two parts. In the first part, we report the usage of the small prime difference method of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mi>p</mi> <mo>&#8722;</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mrow> <mi>q</mi> <mo stretchy="false">|</mo> <mo>&lt;</mo> </mrow> <msup> <mi>N</mi> <mi>&#947;</mi> </msup> </mrow> </semantics> </math> </inline-formula> where the ratio of <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> </semantics> </math> </inline-formula> is close to <inline-formula> <math display="inline"> <semantics> <mfrac> <msup> <mi>b</mi> <mn>2</mn> </msup> <msup> <mi>a</mi> <mn>2</mn> </msup> </mfrac> </semantics> </math> </inline-formula>, which yields a bound <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&lt;</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>2</mn> </msqrt> </mfrac> <msup> <mi>N</mi> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>&#8722;</mo> <mi>&#947;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> from the convergents of the continued fraction expansion of <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>e</mi> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mo stretchy="false">&#8968;</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </mfrac> <msqrt> <mi>N</mi> </msqrt> <mo stretchy="false">&rceil;</mo> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </semantics> </math> </inline-formula>. The second part of the paper reports four cryptanalytic attacks on <i>t</i> instances of RSA moduli <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>p</mi> <mi>s</mi> </msub> <msub> <mi>q</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> where we use <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mo stretchy="false">&#8968;</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </mfrac> <msqrt> <mi>N</mi> </msqrt> <mo stretchy="false">&rceil;</mo> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> as an approximation of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> satisfying generalized key equations of the shape <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mi>d</mi> <mo>&#8722;</mo> <msub> <mi>k</mi> <mi>s</mi> </msub> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>&#8722;</mo> <mi>k</mi> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mi>d</mi> <mo>&#8722;</mo> <msub> <mi>k</mi> <mi>s</mi> </msub> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>&#8722;</mo> <mi>k</mi> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula> for unknown positive integers <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>k</mi> <mi>s</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>k</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mi>s</mi> </msub> </semantics> </math> </inline-formula>, where we establish that <i>t</i> RSA moduli can be simultaneously factored in polynomial time using combinations of simultaneous Diophantine approximations and lattice basis reduction methods. In all the reported attacks, we have found an improved short secret exponent bound, which is considered to be better than some bounds as reported in the literature.
topic RSA modulus
primes difference
cryptanalysis
short decryption exponent
attacks
continued fraction
url https://www.mdpi.com/2410-387X/3/1/2
work_keys_str_mv AT muhammadrezalkamelariffin newcryptanalyticattackonrsamodulusiniipqiusingsmallprimedifferencemethod
AT saiduisahabubakar newcryptanalyticattackonrsamodulusiniipqiusingsmallprimedifferencemethod
AT faridahyunos newcryptanalyticattackonrsamodulusiniipqiusingsmallprimedifferencemethod
AT muhammadasyrafasbullah newcryptanalyticattackonrsamodulusiniipqiusingsmallprimedifferencemethod
_version_ 1725189616168861696
spelling doaj-6e6be974c7b74e97b1fc09efa1befe042020-11-25T01:06:33ZengMDPI AGCryptography2410-387X2018-12-0131210.3390/cryptography3010002cryptography3010002New Cryptanalytic Attack on RSA Modulus <i>N</i> = <i>pq</i> Using Small Prime Difference MethodMuhammad Rezal Kamel Ariffin0Saidu Isah Abubakar1Faridah Yunos2Muhammad Asyraf Asbullah3Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia, Selangor 43400, MalaysiaAl-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia, Selangor 43400, MalaysiaAl-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia, Selangor 43400, MalaysiaAl-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia, Selangor 43400, MalaysiaThis paper presents new short decryption exponent attacks on RSA, which successfully leads to the factorization of RSA modulus <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>p</mi> <mi>q</mi> </mrow> </semantics> </math> </inline-formula> in polynomial time. The paper has two parts. In the first part, we report the usage of the small prime difference method of the form <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mi>p</mi> <mo>&#8722;</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mrow> <mi>q</mi> <mo stretchy="false">|</mo> <mo>&lt;</mo> </mrow> <msup> <mi>N</mi> <mi>&#947;</mi> </msup> </mrow> </semantics> </math> </inline-formula> where the ratio of <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> </semantics> </math> </inline-formula> is close to <inline-formula> <math display="inline"> <semantics> <mfrac> <msup> <mi>b</mi> <mn>2</mn> </msup> <msup> <mi>a</mi> <mn>2</mn> </msup> </mfrac> </semantics> </math> </inline-formula>, which yields a bound <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>&lt;</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>2</mn> </msqrt> </mfrac> <msup> <mi>N</mi> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>&#8722;</mo> <mi>&#947;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> from the convergents of the continued fraction expansion of <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>e</mi> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mo stretchy="false">&#8968;</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </mfrac> <msqrt> <mi>N</mi> </msqrt> <mo stretchy="false">&rceil;</mo> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </semantics> </math> </inline-formula>. The second part of the paper reports four cryptanalytic attacks on <i>t</i> instances of RSA moduli <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>p</mi> <mi>s</mi> </msub> <msub> <mi>q</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#8230;</mo> <mo>,</mo> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> where we use <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mo stretchy="false">&#8968;</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </mfrac> <msqrt> <mi>N</mi> </msqrt> <mo stretchy="false">&rceil;</mo> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> as an approximation of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> satisfying generalized key equations of the shape <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mi>d</mi> <mo>&#8722;</mo> <msub> <mi>k</mi> <mi>s</mi> </msub> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>&#8722;</mo> <mi>k</mi> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <mi>d</mi> <mo>&#8722;</mo> <msub> <mi>k</mi> <mi>s</mi> </msub> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>e</mi> <mi>s</mi> </msub> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>&#8722;</mo> <mi>k</mi> <mi>ϕ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula> for unknown positive integers <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>k</mi> <mi>s</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>d</mi> <mi>s</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <msub> <mi>k</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mi>s</mi> </msub> </semantics> </math> </inline-formula>, where we establish that <i>t</i> RSA moduli can be simultaneously factored in polynomial time using combinations of simultaneous Diophantine approximations and lattice basis reduction methods. In all the reported attacks, we have found an improved short secret exponent bound, which is considered to be better than some bounds as reported in the literature.https://www.mdpi.com/2410-387X/3/1/2RSA modulusprimes differencecryptanalysisshort decryption exponentattackscontinued fraction