LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection

Trajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They als...

Full description

Bibliographic Details
Main Authors: Yunfeng Wang, Mingzhen Li, Shoushan Luo, Yang Xin, Hongliang Zhu, Yuling Chen, Guangcan Yang, Yixian Yang
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8933424/
id doaj-6e300dad378e48a79fe711c0ea93cf8e
record_format Article
spelling doaj-6e300dad378e48a79fe711c0ea93cf8e2021-03-30T00:40:15ZengIEEEIEEE Access2169-35362019-01-01718288618290510.1109/ACCESS.2019.29600088933424LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy ProtectionYunfeng Wang0https://orcid.org/0000-0002-8674-8356Mingzhen Li1https://orcid.org/0000-0003-1029-0227Shoushan Luo2https://orcid.org/0000-0001-8067-4774Yang Xin3https://orcid.org/0000-0002-9706-3950Hongliang Zhu4https://orcid.org/0000-0003-2448-2027Yuling Chen5Guangcan Yang6Yixian Yang7National Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaGuizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaTrajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They also reduce data availability. Thus, this paper proposes a location recombination mechanism (LRM) for achieving trajectory k-anonymity privacy protection. First, we propose a metric that measures the location pair similarity between location pairs. Based on this metric, we select sampling locations and divide locations into different equivalent probability classes. Locations in one equivalent probability class have the same probability as one corresponding base location. Then, we also introduce two metrics that measure the probabilistic similarity and geographic similarity between locations. Based on these metrics, we design algorithms to generate fake trajectories. These algorithms can recombine locations sampled from each equivalent probability class into trajectories. All of these trajectories meet the privacy protection requirements for both base trajectories and sampling trajectories. Finally, we evaluate our scheme thoroughly with real-world data. The results show that our method can protect the privacy of base trajectories and sampling trajectories and achieve a better performance of service provider utility and data availability than other schemes.https://ieeexplore.ieee.org/document/8933424/Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymitytrajectory privacyprivacy protectionlocation recombination mechanismfake trajectories
collection DOAJ
language English
format Article
sources DOAJ
author Yunfeng Wang
Mingzhen Li
Shoushan Luo
Yang Xin
Hongliang Zhu
Yuling Chen
Guangcan Yang
Yixian Yang
spellingShingle Yunfeng Wang
Mingzhen Li
Shoushan Luo
Yang Xin
Hongliang Zhu
Yuling Chen
Guangcan Yang
Yixian Yang
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
IEEE Access
Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymity
trajectory privacy
privacy protection
location recombination mechanism
fake trajectories
author_facet Yunfeng Wang
Mingzhen Li
Shoushan Luo
Yang Xin
Hongliang Zhu
Yuling Chen
Guangcan Yang
Yixian Yang
author_sort Yunfeng Wang
title LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
title_short LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
title_full LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
title_fullStr LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
title_full_unstemmed LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
title_sort lrm: a location recombination mechanism for achieving trajectory <inline-formula> <tex-math notation="latex">$k$ </tex-math></inline-formula>-anonymity privacy protection
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description Trajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They also reduce data availability. Thus, this paper proposes a location recombination mechanism (LRM) for achieving trajectory k-anonymity privacy protection. First, we propose a metric that measures the location pair similarity between location pairs. Based on this metric, we select sampling locations and divide locations into different equivalent probability classes. Locations in one equivalent probability class have the same probability as one corresponding base location. Then, we also introduce two metrics that measure the probabilistic similarity and geographic similarity between locations. Based on these metrics, we design algorithms to generate fake trajectories. These algorithms can recombine locations sampled from each equivalent probability class into trajectories. All of these trajectories meet the privacy protection requirements for both base trajectories and sampling trajectories. Finally, we evaluate our scheme thoroughly with real-world data. The results show that our method can protect the privacy of base trajectories and sampling trajectories and achieve a better performance of service provider utility and data availability than other schemes.
topic Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymity
trajectory privacy
privacy protection
location recombination mechanism
fake trajectories
url https://ieeexplore.ieee.org/document/8933424/
work_keys_str_mv AT yunfengwang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT mingzhenli lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT shoushanluo lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT yangxin lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT hongliangzhu lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT yulingchen lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT guangcanyang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
AT yixianyang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection
_version_ 1724188029011099648