LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection
Trajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They als...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8933424/ |
id |
doaj-6e300dad378e48a79fe711c0ea93cf8e |
---|---|
record_format |
Article |
spelling |
doaj-6e300dad378e48a79fe711c0ea93cf8e2021-03-30T00:40:15ZengIEEEIEEE Access2169-35362019-01-01718288618290510.1109/ACCESS.2019.29600088933424LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy ProtectionYunfeng Wang0https://orcid.org/0000-0002-8674-8356Mingzhen Li1https://orcid.org/0000-0003-1029-0227Shoushan Luo2https://orcid.org/0000-0001-8067-4774Yang Xin3https://orcid.org/0000-0002-9706-3950Hongliang Zhu4https://orcid.org/0000-0003-2448-2027Yuling Chen5Guangcan Yang6Yixian Yang7National Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaGuizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, ChinaTrajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They also reduce data availability. Thus, this paper proposes a location recombination mechanism (LRM) for achieving trajectory k-anonymity privacy protection. First, we propose a metric that measures the location pair similarity between location pairs. Based on this metric, we select sampling locations and divide locations into different equivalent probability classes. Locations in one equivalent probability class have the same probability as one corresponding base location. Then, we also introduce two metrics that measure the probabilistic similarity and geographic similarity between locations. Based on these metrics, we design algorithms to generate fake trajectories. These algorithms can recombine locations sampled from each equivalent probability class into trajectories. All of these trajectories meet the privacy protection requirements for both base trajectories and sampling trajectories. Finally, we evaluate our scheme thoroughly with real-world data. The results show that our method can protect the privacy of base trajectories and sampling trajectories and achieve a better performance of service provider utility and data availability than other schemes.https://ieeexplore.ieee.org/document/8933424/Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymitytrajectory privacyprivacy protectionlocation recombination mechanismfake trajectories |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yunfeng Wang Mingzhen Li Shoushan Luo Yang Xin Hongliang Zhu Yuling Chen Guangcan Yang Yixian Yang |
spellingShingle |
Yunfeng Wang Mingzhen Li Shoushan Luo Yang Xin Hongliang Zhu Yuling Chen Guangcan Yang Yixian Yang LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection IEEE Access Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymity trajectory privacy privacy protection location recombination mechanism fake trajectories |
author_facet |
Yunfeng Wang Mingzhen Li Shoushan Luo Yang Xin Hongliang Zhu Yuling Chen Guangcan Yang Yixian Yang |
author_sort |
Yunfeng Wang |
title |
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection |
title_short |
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection |
title_full |
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection |
title_fullStr |
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection |
title_full_unstemmed |
LRM: A Location Recombination Mechanism for Achieving Trajectory <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Anonymity Privacy Protection |
title_sort |
lrm: a location recombination mechanism for achieving trajectory <inline-formula> <tex-math notation="latex">$k$ </tex-math></inline-formula>-anonymity privacy protection |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2019-01-01 |
description |
Trajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However, the existing techniques for generating fake trajectories can be easily broken by an adversary because of the failure to capture the probabilistic features and geographic features of the trajectories. They also reduce data availability. Thus, this paper proposes a location recombination mechanism (LRM) for achieving trajectory k-anonymity privacy protection. First, we propose a metric that measures the location pair similarity between location pairs. Based on this metric, we select sampling locations and divide locations into different equivalent probability classes. Locations in one equivalent probability class have the same probability as one corresponding base location. Then, we also introduce two metrics that measure the probabilistic similarity and geographic similarity between locations. Based on these metrics, we design algorithms to generate fake trajectories. These algorithms can recombine locations sampled from each equivalent probability class into trajectories. All of these trajectories meet the privacy protection requirements for both base trajectories and sampling trajectories. Finally, we evaluate our scheme thoroughly with real-world data. The results show that our method can protect the privacy of base trajectories and sampling trajectories and achieve a better performance of service provider utility and data availability than other schemes. |
topic |
Trajectory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-anonymity trajectory privacy privacy protection location recombination mechanism fake trajectories |
url |
https://ieeexplore.ieee.org/document/8933424/ |
work_keys_str_mv |
AT yunfengwang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT mingzhenli lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT shoushanluo lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT yangxin lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT hongliangzhu lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT yulingchen lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT guangcanyang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection AT yixianyang lrmalocationrecombinationmechanismforachievingtrajectoryinlineformulatexmathnotationlatexktexmathinlineformulaanonymityprivacyprotection |
_version_ |
1724188029011099648 |