Automated segmentation of intraretinal cystoid macular edema based on Gaussian mixture model
We introduce a method based on Gaussian mixture model (GMM) clustering and level-set to automatically detect intraretina fluid on diabetic retinopathy (DR) from spectral domain optical coherence tomography (SD-OCT) images in this paper. First, each B-scan is segmented using GMM clustering. The origi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
World Scientific Publishing
2020-01-01
|
Series: | Journal of Innovative Optical Health Sciences |
Subjects: | |
Online Access: | http://www.worldscientific.com/doi/pdf/10.1142/S1793545819500202 |
Summary: | We introduce a method based on Gaussian mixture model (GMM) clustering and level-set to automatically detect intraretina fluid on diabetic retinopathy (DR) from spectral domain optical coherence tomography (SD-OCT) images in this paper. First, each B-scan is segmented using GMM clustering. The original clustering results are refined using location and thickness information. Then, the spatial information among every consecutive five B-scans is used to search potential fluid. Finally, the improved level-set method is used to obtain the accurate boundaries. The high sensitivity and accuracy demonstrated here show its potential for detection of fluid. |
---|---|
ISSN: | 1793-5458 1793-7205 |