Spontaneous magnetization reversal caused by magnetic noise in ε-In0.24Fe1.76O3 nanoparticles

Kinetics of magnetization relaxation of the exotic ε-In0.24Fe1.76O3 nanoparticles under applied magnetic field has been studied. The fluctuation field and the activation volume have been calculated from the magnetic viscosity data. The relation between magnetic viscosity and magnetic noise caused by...

Full description

Bibliographic Details
Main Author: Dmitriev Alexei
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201818504028
Description
Summary:Kinetics of magnetization relaxation of the exotic ε-In0.24Fe1.76O3 nanoparticles under applied magnetic field has been studied. The fluctuation field and the activation volume have been calculated from the magnetic viscosity data. The relation between magnetic viscosity and magnetic noise caused by the random thermally activated magnetization reversal of a single nanoparticle has been established. Stepped sweeping of magnetic field expands the windows of experimentally detectable magnetic fluctuations. The changes in the reversal magnetic field provide ε-In0.24Fe1.76O3 nanoparticles scanning and sorting them by magnetic noise frequency.
ISSN:2100-014X