Periodic traveling compression regions during quiet geomagnetic conditions and their association with ground Pi2

Recently, Keiling et al. (2006) showed that periodic (~90 s) traveling compression regions (TCRs) during a substorm had properties of Pi2 pulsations, prompting them to call this type of periodic TCRs "lobe Pi2". It was further shown that time-delayed ground Pi2 had the same period as th...

Full description

Bibliographic Details
Main Authors: A. Keiling, F. S. Mozer, H. Rème, I. Dandouras, E. Lucek, M. Fujimoto, H. Hasegawa, G. D. Reeves
Format: Article
Language:English
Published: Copernicus Publications 2008-10-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/26/3341/2008/angeo-26-3341-2008.pdf
Description
Summary:Recently, Keiling et al. (2006) showed that periodic (~90 s) traveling compression regions (TCRs) during a substorm had properties of Pi2 pulsations, prompting them to call this type of periodic TCRs "lobe Pi2". It was further shown that time-delayed ground Pi2 had the same period as the lobe Pi2 located at 16 <I>R<sub>E</sub></I>, and it was concluded that both were remotely driven by periodic, pulsed reconnection in the magnetotail. In the study reported here, we give further evidence for this association by reporting additional periodic TCR events (lobe Pi2s) at 18 <I>R<sub>E</sub></I> all of which occurred in succession during a geomagnetically very quiet, non-substorm period. Each quiet-time periodic TCR event occurred during an interval of small <I>H</I>-bay-like ground disturbance (&lt;40 nT). Such disturbances have previously been identified as poleward boundary intensifications (PBIs). The small <I>H</I> bays were superposed by Pi2s. These ground Pi2s are compared to the TCRs in the tail lobe (Cluster) and both magnetic pulsations and flow variations at 9 <I>R<sub>E</sub></I> inside the plasma sheet (Geotail). The main results of this study are: (1) Further evidence is given that periodic TCRs in the tail lobe at distances of 18 <I>R<sub>E</sub></I> and ground Pi2 are related phenomena. In particular, it is shown that both had the same periodicity and occurred simultaneously (allowing for propagation time delays) strongly suggesting that both had the same periodic source. Since the TCRs were propagating Earthward, this source was located in the outer magnetosphere beyond 18 <I>R<sub>E</sub></I>. (2) The connection of periodic TCRs and ground Pi2 also exists during very quiet geomagnetic conditions with PBIs present in addition to the previous result (Keiling et al., 2006) which showed this connection during substorms. (3) Combining (1) and (2), we conclude that the frequency of PBI-associated Pi2 is controlled in the outer magnetosphere as opposed to the inner magnetosphere. We propose that this mechanism is pulsed reconnection based on previous results which combined modeled results and observations of substorm-related periodic TCRs and ground Pi2. (4) We show that TCRs with small compression ratios (ΔB/B&lt;1%) can be useful in the study of magnetotail dynamics and we argue that other compressional fluctuations with ΔB/B&lt;1% (without having all of the characteristic signatures of TCRs) seen in the tail lobe could possibly be related to the same mechanism that generates TCR with ΔB/B&gt;1% (which are more commonly studied). (5) Finally, it is noted that both quiet time and substorm-related periodic TCRs had remarkably similar periods in spite of the drastically different geomagnetic conditions prevailing during the events which poses the important question of what causes this periodicity under these different conditions.
ISSN:0992-7689
1432-0576