Summary: | This study modelled the potential biodiversity benefits and the opportunity costs of a patch-clear-cutting strategy over a clear-cutting strategy for Pinus radiata in New Zealand. Patch-clear cutting is a special case of clear cutting involving the removal of all the trees from strips or patches within a stand, leaving the remainder uncut or clear cutting a series of strips or patches. A forest-level optimisation model was extended to include uncertainty in timber growth, plant diversity, and cutting costs. Using a species-area relationship and economies of cutting scale, the net present value and optimal rotation age under alternative management strategies were calculated. Results suggested that the optimal rotation ages were similar (24 and 25 years) for the two cutting strategies. Patch-clear cutting provided higher biodiversity benefits (i.e., 59 vs. 11 understorey plant species) with an opportunity cost of 27 NZD (18 USD) per extra plant species or 1250 NZD (820 USD) ha−1. However, the true benefits of patch-clear cutting would be even greater if other benefits of stand retention are included. Our research can potentially inform local decision making and inform international systems of payment for environmental services, such as the REDD+ (Reducing Emissions from Deforestation and Forest Degradation) program, to conserve biodiversity in developing countries with plantation forests.
|