Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study

<p>Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-...

Full description

Bibliographic Details
Main Authors: F. Piel, M. Müller, T. Mikoviny, S. E. Pusede, A. Wisthaler
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf
id doaj-6d8ad8ced1964cca8da9ca47f9c34321
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author F. Piel
F. Piel
M. Müller
T. Mikoviny
S. E. Pusede
A. Wisthaler
A. Wisthaler
spellingShingle F. Piel
F. Piel
M. Müller
T. Mikoviny
S. E. Pusede
A. Wisthaler
A. Wisthaler
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
Atmospheric Measurement Techniques
author_facet F. Piel
F. Piel
M. Müller
T. Mikoviny
S. E. Pusede
A. Wisthaler
A. Wisthaler
author_sort F. Piel
title Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
title_short Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
title_full Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
title_fullStr Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
title_full_unstemmed Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
title_sort airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (ptr-ms): a pilot study
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2019-11-01
description <p>Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne Science Laboratory on 26 June 2018 over California in the frame of NASA's Student Airborne Research Program (SARP). We show exemplary data collected when the airplane (i) shortly encountered a fresh (<span class="inline-formula">&lt;1</span>&thinsp;h old) smoke plume that had emanated from the Lions Fire in the Sierra Nevada, (ii) intercepted a particle plume emitted from an amine gas treating unit of a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey in the boundary layer over the San Joaquin Valley and (iv) performed a vertical profile measurement over the greater Bakersfield area. The most important finding from this pilot study is that the CHARON PTR-ToF-MS system measures fast enough to be deployed on a jet research aircraft. The data collected during 3 to 15&thinsp;s long plume encounters demonstrate the feasibility of airborne point or small area emission measurements. Further improvements are, however, warranted to eliminate or reduce the observed signal tailing (1/e decay time between 6 and 20&thinsp;s). The fast time response of the analyzer allowed us to generate highly spatially resolved maps (1–2&thinsp;km in the horizontal, 100&thinsp;m in the vertical) of atmospheric particle chemical constituents. The chemical information that was extracted from the recorded particle mass spectra includes (i) mass concentrations of ammonium, nitrate and total organics; (ii) mass concentrations of different classes of organic compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic compounds); (iii) aerosol bulk average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">O</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8cfe74e9fe611851ea15ec7ccc1359ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00001.svg" width="27pt" height="13pt" src="amt-12-5947-2019-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">H</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="72eb646e8686d99e73d7553ddeb7b82f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00002.svg" width="26pt" height="13pt" src="amt-12-5947-2019-ie00002.png"/></svg:svg></span></span> ratios; (iv) mass concentrations of selected marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire emission ratios (<span class="inline-formula">Δ</span>total organics/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;0.054; <span class="inline-formula">Δ</span>levoglucosan/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d6e6578b0654179f9c5df76ac37ffe5d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00003.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00003.png"/></svg:svg></span></span>; <span class="inline-formula">Δ</span>vanillic acid/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="33454c841eccee36afb770590d239d3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00004.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">Δ</span>retene/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="463cf4a0eaa7ece3f5cdd24f2c6238e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00005.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00005.png"/></svg:svg></span></span>; all calculated as peak area ratios, in grams per gram). The capability of the CHARON PTR-ToF-MS instrument to chemically characterize submicrometer atmospheric particles in a quantitative manner, at the near-molecular level, and in real time brings a new and unprecedented measurement capability to the airborne atmospheric science community.</p>
url https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf
work_keys_str_mv AT fpiel airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT fpiel airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT mmuller airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT tmikoviny airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT sepusede airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT awisthaler airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
AT awisthaler airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy
_version_ 1725014698502389760
spelling doaj-6d8ad8ced1964cca8da9ca47f9c343212020-11-25T01:47:21ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-11-01125947595810.5194/amt-12-5947-2019Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot studyF. Piel0F. Piel1M. Müller2T. Mikoviny3S. E. Pusede4A. Wisthaler5A. Wisthaler6Ionicon Analytik GmbH, 6020 Innsbruck, AustriaInstitute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, AustriaIonicon Analytik GmbH, 6020 Innsbruck, AustriaDepartment of Chemistry, University of Oslo, 0315 Oslo, NorwayDepartment of Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123, USAInstitute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, AustriaDepartment of Chemistry, University of Oslo, 0315 Oslo, Norway<p>Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne Science Laboratory on 26 June 2018 over California in the frame of NASA's Student Airborne Research Program (SARP). We show exemplary data collected when the airplane (i) shortly encountered a fresh (<span class="inline-formula">&lt;1</span>&thinsp;h old) smoke plume that had emanated from the Lions Fire in the Sierra Nevada, (ii) intercepted a particle plume emitted from an amine gas treating unit of a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey in the boundary layer over the San Joaquin Valley and (iv) performed a vertical profile measurement over the greater Bakersfield area. The most important finding from this pilot study is that the CHARON PTR-ToF-MS system measures fast enough to be deployed on a jet research aircraft. The data collected during 3 to 15&thinsp;s long plume encounters demonstrate the feasibility of airborne point or small area emission measurements. Further improvements are, however, warranted to eliminate or reduce the observed signal tailing (1/e decay time between 6 and 20&thinsp;s). The fast time response of the analyzer allowed us to generate highly spatially resolved maps (1–2&thinsp;km in the horizontal, 100&thinsp;m in the vertical) of atmospheric particle chemical constituents. The chemical information that was extracted from the recorded particle mass spectra includes (i) mass concentrations of ammonium, nitrate and total organics; (ii) mass concentrations of different classes of organic compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic compounds); (iii) aerosol bulk average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">O</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8cfe74e9fe611851ea15ec7ccc1359ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00001.svg" width="27pt" height="13pt" src="amt-12-5947-2019-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">H</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="72eb646e8686d99e73d7553ddeb7b82f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00002.svg" width="26pt" height="13pt" src="amt-12-5947-2019-ie00002.png"/></svg:svg></span></span> ratios; (iv) mass concentrations of selected marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire emission ratios (<span class="inline-formula">Δ</span>total organics/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;0.054; <span class="inline-formula">Δ</span>levoglucosan/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d6e6578b0654179f9c5df76ac37ffe5d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00003.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00003.png"/></svg:svg></span></span>; <span class="inline-formula">Δ</span>vanillic acid/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="33454c841eccee36afb770590d239d3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00004.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">Δ</span>retene/<span class="inline-formula">Δ</span>CO&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="463cf4a0eaa7ece3f5cdd24f2c6238e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00005.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00005.png"/></svg:svg></span></span>; all calculated as peak area ratios, in grams per gram). The capability of the CHARON PTR-ToF-MS instrument to chemically characterize submicrometer atmospheric particles in a quantitative manner, at the near-molecular level, and in real time brings a new and unprecedented measurement capability to the airborne atmospheric science community.</p>https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf