Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
<p>Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-11-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf |
id |
doaj-6d8ad8ced1964cca8da9ca47f9c34321 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Piel F. Piel M. Müller T. Mikoviny S. E. Pusede A. Wisthaler A. Wisthaler |
spellingShingle |
F. Piel F. Piel M. Müller T. Mikoviny S. E. Pusede A. Wisthaler A. Wisthaler Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study Atmospheric Measurement Techniques |
author_facet |
F. Piel F. Piel M. Müller T. Mikoviny S. E. Pusede A. Wisthaler A. Wisthaler |
author_sort |
F. Piel |
title |
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study |
title_short |
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study |
title_full |
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study |
title_fullStr |
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study |
title_full_unstemmed |
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study |
title_sort |
airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (ptr-ms): a pilot study |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2019-11-01 |
description |
<p>Herein we report on the first successful airborne deployment of
the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical
composition of atmospheric submicrometer particles in real time using a
state-of-the-art proton-transfer-reaction time-of-flight mass spectrometry
(PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne
Science Laboratory on 26 June 2018 over California in the frame of NASA's
Student Airborne Research Program (SARP). We show exemplary data collected
when the airplane (i) shortly encountered a fresh (<span class="inline-formula"><1</span> h old) smoke
plume that had emanated from the Lions Fire in the Sierra Nevada,
(ii) intercepted a particle plume emitted from an amine gas treating unit of
a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey
in the boundary layer over the San Joaquin Valley and (iv) performed a
vertical profile measurement over the greater Bakersfield area. The most
important finding from this pilot study is that the CHARON PTR-ToF-MS system
measures fast enough to be deployed on a jet research aircraft. The data
collected during 3 to 15 s long plume encounters demonstrate the
feasibility of airborne point or small area emission measurements. Further
improvements are, however, warranted to eliminate or reduce the observed
signal tailing (1/e decay time between 6 and 20 s). The fast time response of the
analyzer allowed us to generate highly spatially resolved maps (1–2 km in
the horizontal, 100 m in the vertical) of atmospheric particle chemical
constituents. The chemical information that was extracted from the recorded
particle mass spectra includes (i) mass concentrations of ammonium, nitrate
and total organics; (ii) mass concentrations of different classes of organic
compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic
compounds); (iii) aerosol bulk average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">O</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8cfe74e9fe611851ea15ec7ccc1359ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00001.svg" width="27pt" height="13pt" src="amt-12-5947-2019-ie00001.png"/></svg:svg></span></span> and
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">H</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="72eb646e8686d99e73d7553ddeb7b82f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00002.svg" width="26pt" height="13pt" src="amt-12-5947-2019-ie00002.png"/></svg:svg></span></span> ratios; (iv) mass concentrations of selected
marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an
alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire
emission ratios (<span class="inline-formula">Δ</span>total organics/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> 0.054; <span class="inline-formula">Δ</span>levoglucosan/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d6e6578b0654179f9c5df76ac37ffe5d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00003.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00003.png"/></svg:svg></span></span>; <span class="inline-formula">Δ</span>vanillic acid/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="33454c841eccee36afb770590d239d3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00004.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">Δ</span>retene/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="463cf4a0eaa7ece3f5cdd24f2c6238e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00005.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00005.png"/></svg:svg></span></span>; all calculated as peak area ratios, in grams per gram). The
capability of the CHARON PTR-ToF-MS instrument to chemically characterize
submicrometer atmospheric particles in a quantitative manner, at the
near-molecular level, and in real time brings a new and unprecedented
measurement capability to the airborne atmospheric science community.</p> |
url |
https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf |
work_keys_str_mv |
AT fpiel airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT fpiel airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT mmuller airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT tmikoviny airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT sepusede airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT awisthaler airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy AT awisthaler airbornemeasurementsofparticulateorganicmatterbyprotontransferreactionmassspectrometryptrmsapilotstudy |
_version_ |
1725014698502389760 |
spelling |
doaj-6d8ad8ced1964cca8da9ca47f9c343212020-11-25T01:47:21ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-11-01125947595810.5194/amt-12-5947-2019Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot studyF. Piel0F. Piel1M. Müller2T. Mikoviny3S. E. Pusede4A. Wisthaler5A. Wisthaler6Ionicon Analytik GmbH, 6020 Innsbruck, AustriaInstitute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, AustriaIonicon Analytik GmbH, 6020 Innsbruck, AustriaDepartment of Chemistry, University of Oslo, 0315 Oslo, NorwayDepartment of Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123, USAInstitute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, AustriaDepartment of Chemistry, University of Oslo, 0315 Oslo, Norway<p>Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne Science Laboratory on 26 June 2018 over California in the frame of NASA's Student Airborne Research Program (SARP). We show exemplary data collected when the airplane (i) shortly encountered a fresh (<span class="inline-formula"><1</span> h old) smoke plume that had emanated from the Lions Fire in the Sierra Nevada, (ii) intercepted a particle plume emitted from an amine gas treating unit of a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey in the boundary layer over the San Joaquin Valley and (iv) performed a vertical profile measurement over the greater Bakersfield area. The most important finding from this pilot study is that the CHARON PTR-ToF-MS system measures fast enough to be deployed on a jet research aircraft. The data collected during 3 to 15 s long plume encounters demonstrate the feasibility of airborne point or small area emission measurements. Further improvements are, however, warranted to eliminate or reduce the observed signal tailing (1/e decay time between 6 and 20 s). The fast time response of the analyzer allowed us to generate highly spatially resolved maps (1–2 km in the horizontal, 100 m in the vertical) of atmospheric particle chemical constituents. The chemical information that was extracted from the recorded particle mass spectra includes (i) mass concentrations of ammonium, nitrate and total organics; (ii) mass concentrations of different classes of organic compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic compounds); (iii) aerosol bulk average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">O</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8cfe74e9fe611851ea15ec7ccc1359ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00001.svg" width="27pt" height="13pt" src="amt-12-5947-2019-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">H</mi><mo>:</mo><mi mathvariant="normal">C</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="72eb646e8686d99e73d7553ddeb7b82f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00002.svg" width="26pt" height="13pt" src="amt-12-5947-2019-ie00002.png"/></svg:svg></span></span> ratios; (iv) mass concentrations of selected marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire emission ratios (<span class="inline-formula">Δ</span>total organics/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> 0.054; <span class="inline-formula">Δ</span>levoglucosan/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d6e6578b0654179f9c5df76ac37ffe5d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00003.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00003.png"/></svg:svg></span></span>; <span class="inline-formula">Δ</span>vanillic acid/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="33454c841eccee36afb770590d239d3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00004.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">Δ</span>retene/<span class="inline-formula">Δ</span>CO <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="463cf4a0eaa7ece3f5cdd24f2c6238e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-5947-2019-ie00005.svg" width="51pt" height="14pt" src="amt-12-5947-2019-ie00005.png"/></svg:svg></span></span>; all calculated as peak area ratios, in grams per gram). The capability of the CHARON PTR-ToF-MS instrument to chemically characterize submicrometer atmospheric particles in a quantitative manner, at the near-molecular level, and in real time brings a new and unprecedented measurement capability to the airborne atmospheric science community.</p>https://www.atmos-meas-tech.net/12/5947/2019/amt-12-5947-2019.pdf |