Highly soluble cellulose nitrates from unconventional feedstocks

Celluloses isolated by the nitric-acid process from domestic unconventional feedstocks such as Miscanthus, oat hulls, and intermediate flax straw were used herein to produce cellulose nitrates (CNs) with a high solubility. For the synthesis of CNs, a commercial technique was employed that involves n...

Full description

Bibliographic Details
Main Authors: Gismatulina Yulia, Korchagina Anna, Budaeva Vera, Sakovich Gennady
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201824300005
Description
Summary:Celluloses isolated by the nitric-acid process from domestic unconventional feedstocks such as Miscanthus, oat hulls, and intermediate flax straw were used herein to produce cellulose nitrates (CNs) with a high solubility. For the synthesis of CNs, a commercial technique was employed that involves nitration of cellulose with mixed acid containing 14 wt.% water followed by high-temperature treatment of the nitration product in acidic, alkaline, and neutral environments. The obtained CNs are similar in physicochemical attributes: 12.04–12.26% mass fraction of nitrogen, 10–14 mPa·s viscosity, and 98% solubility in alcohol– ester mixture. FTIR spectra of CNs had absorption bands (2559–2557, 1646–1631, 1277–1271, 825–812, 747–744, 683–680 cm-1) typical of nitro group vibrations. 13C NMR spectra showed chemical shifts representative of 6-mononitrocellulose, 2,6-dinitrocellulose, 3,6-dinitrocellulose, and 2,3,6-trinitrocellulose. DSC revealed that the resultant CNs were highly chemically pure with an exothermic peak at 209–212°С. The CNs obtained from the said unconventional feedstocks were compared with a commercial, highviscosity, lacquer-grade Colloxylin derived from cotton cellulose, as well as with other commercial Colloxylins, to show that the experimental CNs meet the requirements for comercial grades. Thus, the CNs obtained from the unconventional feedstocks are promising candidates as the component of composite explosives.
ISSN:2261-236X