Brain classification reveals the right cerebellum as the best biomarker of dyslexia

<p>Abstract</p> <p>Background</p> <p>Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort...

Full description

Bibliographic Details
Main Authors: Demonet Jean, Poline Jean, Pernet Cyril R, Rousselet Guillaume A
Format: Article
Language:English
Published: BMC 2009-06-01
Series:BMC Neuroscience
Online Access:http://www.biomedcentral.com/1471-2202/10/67
id doaj-6d5f2bc76e0c4750a6133c62abc1344d
record_format Article
spelling doaj-6d5f2bc76e0c4750a6133c62abc1344d2020-11-25T01:13:46ZengBMCBMC Neuroscience1471-22022009-06-011016710.1186/1471-2202-10-67Brain classification reveals the right cerebellum as the best biomarker of dyslexiaDemonet JeanPoline JeanPernet Cyril RRousselet Guillaume A<p>Abstract</p> <p>Background</p> <p>Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique.</p> <p>Results</p> <p>The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N = 39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently modulated the phonological and lexical performances. Best performances (observed in controls) corresponded to an optimal value of grey matter and they dropped for higher or lower volumes.</p> <p>Conclusion</p> <p>These results provide evidence for the existence of various subtypes of dyslexia characterized by different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/or rapid access to lexicon entries.</p> http://www.biomedcentral.com/1471-2202/10/67
collection DOAJ
language English
format Article
sources DOAJ
author Demonet Jean
Poline Jean
Pernet Cyril R
Rousselet Guillaume A
spellingShingle Demonet Jean
Poline Jean
Pernet Cyril R
Rousselet Guillaume A
Brain classification reveals the right cerebellum as the best biomarker of dyslexia
BMC Neuroscience
author_facet Demonet Jean
Poline Jean
Pernet Cyril R
Rousselet Guillaume A
author_sort Demonet Jean
title Brain classification reveals the right cerebellum as the best biomarker of dyslexia
title_short Brain classification reveals the right cerebellum as the best biomarker of dyslexia
title_full Brain classification reveals the right cerebellum as the best biomarker of dyslexia
title_fullStr Brain classification reveals the right cerebellum as the best biomarker of dyslexia
title_full_unstemmed Brain classification reveals the right cerebellum as the best biomarker of dyslexia
title_sort brain classification reveals the right cerebellum as the best biomarker of dyslexia
publisher BMC
series BMC Neuroscience
issn 1471-2202
publishDate 2009-06-01
description <p>Abstract</p> <p>Background</p> <p>Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique.</p> <p>Results</p> <p>The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N = 39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently modulated the phonological and lexical performances. Best performances (observed in controls) corresponded to an optimal value of grey matter and they dropped for higher or lower volumes.</p> <p>Conclusion</p> <p>These results provide evidence for the existence of various subtypes of dyslexia characterized by different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/or rapid access to lexicon entries.</p>
url http://www.biomedcentral.com/1471-2202/10/67
work_keys_str_mv AT demonetjean brainclassificationrevealstherightcerebellumasthebestbiomarkerofdyslexia
AT polinejean brainclassificationrevealstherightcerebellumasthebestbiomarkerofdyslexia
AT pernetcyrilr brainclassificationrevealstherightcerebellumasthebestbiomarkerofdyslexia
AT rousseletguillaumea brainclassificationrevealstherightcerebellumasthebestbiomarkerofdyslexia
_version_ 1725160191632080896