Summary: | Single-phase and three-phase AC-AC converters are employed in variable speed drive, induction heating systems, and grid voltage compensation. They are direct frequency and voltage controllers having no intermediate power conversion stage. The frequency controllers govern the output frequency (low or high) in discrete steps as per the requirements. The voltage controllers only regulate the RMS value of the output voltage. The output voltage regulation is achieved on the basis of the various voltage control techniques such as phase-angle, on-off cycle, and pulse-width modulation (PWM) control. The power quality of the output voltage is directly linked with its control techniques. Voltage controllers implemented with a simple control technique have large harmonics in their output voltage. Different control techniques have various harmonics profiles in the spectrum of the output voltage. Traditionally, the evaluation of power quality concerns is based on the simulation platform. The validity of the simulated values depends on the selection of the period of a waveform. Any deficiency in the selection of the period leads to incorrect results. A mathematical analytical approach can tackle this issue. This becomes important to analytically analyze the harmonious contents generated by various switching control algorithms for the output voltage so that these results can be successfully used for power quality analysis and filtering of harmonics components through various harmonics suppression techniques. Therefore, this research is focused on the analytical computation of the harmonics coefficients in the output voltage realized through the various voltage and frequency control techniques. The mathematically computed results are validated with the simulation and experimental results.
|