lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts

Abstract Background Matrix mineralization is a key stage in bone formation involving in many bone-specific genes and signaling pathways. Emerging evidence indicate that long non-coding RNA (lncRNA) and microRNAs (miRNAs) play crucial roles in regulating the mineralization process of osteoblasts. Thi...

Full description

Bibliographic Details
Main Authors: Yuan Wu, Yu Jiang, Qiang Liu, Cui-Zhong Liu
Format: Article
Language:English
Published: BMC 2019-11-01
Series:BMC Molecular and Cell Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12860-019-0230-3
Description
Summary:Abstract Background Matrix mineralization is a key stage in bone formation involving in many bone-specific genes and signaling pathways. Emerging evidence indicate that long non-coding RNA (lncRNA) and microRNAs (miRNAs) play crucial roles in regulating the mineralization process of osteoblasts. This study aims to characterize the function and mechanism of lncRNA H19/miR-185-5p/IGF1 axis in modulating matrix mineralization of osteoblasts. Results H19 and IGF1 were highly expressed while miR-185-5p was lowly expressed in mineralized cells. Knocking down H19 inhibited matrix mineralization of osteoblasts, yet miR-185-5p had opposite effects. Moreover, H19 directly targeted miR-185-5p, whereas miR-185-5p repressed IGF1 expression. Meanwhile, miR-185-5p inhibition compensated the suppression of the matrix mineralization in osteoblasts by H19 knockdown. Conclusions The findings of this study showed that lncRNA H19 was upregulated in mineralized osteoblasts and promoted matrix mineralization through miR-185-5p/IGF1 axis in osteoblasts for the first time. This study may provide a new perspective for the diagnosis and treatment of diseases related to bone metabolism.
ISSN:2661-8850