Almost triangular matrices over Dedekind domains

Every matrix over a Dedekind domain is equivalent to a direct sum of matrices A=(ai,j), where ai,j=0 whenever j>i+1.

Bibliographic Details
Main Authors: Frank Demeyer, Haniya Kakakhail
Format: Article
Language:English
Published: Hindawi Limited 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299227615
id doaj-6d352eed0c9b4c85ae42a904aac87a9c
record_format Article
spelling doaj-6d352eed0c9b4c85ae42a904aac87a9c2020-11-24T21:03:58ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122476176410.1155/S0161171299227615Almost triangular matrices over Dedekind domainsFrank Demeyer0Haniya Kakakhail1Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USADepartment of Mathematics, Metropolitan State College, Denver, CO 80217, USAEvery matrix over a Dedekind domain is equivalent to a direct sum of matrices A=(ai,j), where ai,j=0 whenever j>i+1.http://dx.doi.org/10.1155/S0161171299227615MatricesDedekind domainsequivalence.
collection DOAJ
language English
format Article
sources DOAJ
author Frank Demeyer
Haniya Kakakhail
spellingShingle Frank Demeyer
Haniya Kakakhail
Almost triangular matrices over Dedekind domains
International Journal of Mathematics and Mathematical Sciences
Matrices
Dedekind domains
equivalence.
author_facet Frank Demeyer
Haniya Kakakhail
author_sort Frank Demeyer
title Almost triangular matrices over Dedekind domains
title_short Almost triangular matrices over Dedekind domains
title_full Almost triangular matrices over Dedekind domains
title_fullStr Almost triangular matrices over Dedekind domains
title_full_unstemmed Almost triangular matrices over Dedekind domains
title_sort almost triangular matrices over dedekind domains
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1999-01-01
description Every matrix over a Dedekind domain is equivalent to a direct sum of matrices A=(ai,j), where ai,j=0 whenever j>i+1.
topic Matrices
Dedekind domains
equivalence.
url http://dx.doi.org/10.1155/S0161171299227615
work_keys_str_mv AT frankdemeyer almosttriangularmatricesoverdedekinddomains
AT haniyakakakhail almosttriangularmatricesoverdedekinddomains
_version_ 1716772516193632256