Summary: | The Asian tiger mosquito, Aedes albopictus, was first detected in North America twenty five years ago. It utilizes water-holding container habitats as immature development sites, and has rapidly spread throughout the eastern United States. Aedes albopictus has occasionally been detected in the western United States, but until recently no established populations of A. albopictus were reported. The western tree-hole mosquito, Aedes sierrensis, is the most common tree-hole mosquito throughout the western United States, and is expected to more frequently encounter A. albopictus. In this study, competition between A. albopictus from the eastern United States and A. sierrensis from the western United States was tested in order to better understand the potential for either competitive displacement of A. sierrensis by A. albopictus or competitive resistance of A. sierrensis to A. albopictus. Varying densities of each species were reared with limited resources in a response surface design. Consistent with a prior study, we found that A. albopictus was clearly a superior larval competitor than A. sierrensis. Aedes sierrensis λ' (finite rate of increase) decreased with increasing A. albopictus density, but in contrast, A. albopictus λ' actually increased with increasing A. sierrensis density; a result that was not reflected by individual fitness parameters. These results indicate that A. sierrensis will not be an effective barrier to A. albopictus invasion into tree-holes in the western United States.
|