A note on semiprime rings with derivation

Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I, then R is commutative.

Bibliographic Details
Main Author: Motoshi Hongan
Format: Article
Language:English
Published: Hindawi Limited 1997-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171297000562
id doaj-6cf624c965a8448a90d981197b9ac4c3
record_format Article
spelling doaj-6cf624c965a8448a90d981197b9ac4c32020-11-24T22:04:19ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120241341510.1155/S0161171297000562A note on semiprime rings with derivationMotoshi Hongan0Tsuyama College of Technology Numa, Tsuyama, Okayama 708, JapanLet R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I, then R is commutative.http://dx.doi.org/10.1155/S0161171297000562derivationsemiprime ring2-torsion free ring.
collection DOAJ
language English
format Article
sources DOAJ
author Motoshi Hongan
spellingShingle Motoshi Hongan
A note on semiprime rings with derivation
International Journal of Mathematics and Mathematical Sciences
derivation
semiprime ring
2-torsion free ring.
author_facet Motoshi Hongan
author_sort Motoshi Hongan
title A note on semiprime rings with derivation
title_short A note on semiprime rings with derivation
title_full A note on semiprime rings with derivation
title_fullStr A note on semiprime rings with derivation
title_full_unstemmed A note on semiprime rings with derivation
title_sort note on semiprime rings with derivation
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1997-01-01
description Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I, then R is commutative.
topic derivation
semiprime ring
2-torsion free ring.
url http://dx.doi.org/10.1155/S0161171297000562
work_keys_str_mv AT motoshihongan anoteonsemiprimeringswithderivation
AT motoshihongan noteonsemiprimeringswithderivation
_version_ 1725829403517124608