A note on semiprime rings with derivation
Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I, then R is commutative.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1997-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171297000562 |
id |
doaj-6cf624c965a8448a90d981197b9ac4c3 |
---|---|
record_format |
Article |
spelling |
doaj-6cf624c965a8448a90d981197b9ac4c32020-11-24T22:04:19ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120241341510.1155/S0161171297000562A note on semiprime rings with derivationMotoshi Hongan0Tsuyama College of Technology Numa, Tsuyama, Okayama 708, JapanLet R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I, then R is commutative.http://dx.doi.org/10.1155/S0161171297000562derivationsemiprime ring2-torsion free ring. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Motoshi Hongan |
spellingShingle |
Motoshi Hongan A note on semiprime rings with derivation International Journal of Mathematics and Mathematical Sciences derivation semiprime ring 2-torsion free ring. |
author_facet |
Motoshi Hongan |
author_sort |
Motoshi Hongan |
title |
A note on semiprime rings with derivation |
title_short |
A note on semiprime rings with derivation |
title_full |
A note on semiprime rings with derivation |
title_fullStr |
A note on semiprime rings with derivation |
title_full_unstemmed |
A note on semiprime rings with derivation |
title_sort |
note on semiprime rings with derivation |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1997-01-01 |
description |
Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center
of R and D:R→R a derivation. If d[x,y]+[x,y]∈Z or d[x,y]−[x,y]∈Z for all x, y∈I,
then R is commutative. |
topic |
derivation semiprime ring 2-torsion free ring. |
url |
http://dx.doi.org/10.1155/S0161171297000562 |
work_keys_str_mv |
AT motoshihongan anoteonsemiprimeringswithderivation AT motoshihongan noteonsemiprimeringswithderivation |
_version_ |
1725829403517124608 |