Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements
Boat-mounted Acoustic Doppler Current Profilers (ADCP) are commonly used to measure the streamwise velocity distribution and discharge in rivers and open channels. Generally, the method used to integrate the measurements is the velocity-area method, which consists of a discrete integration of flow v...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/13/13/1772 |
id |
doaj-6c9fa010b9bf4b13ab43701275caaf3a |
---|---|
record_format |
Article |
spelling |
doaj-6c9fa010b9bf4b13ab43701275caaf3a2021-07-15T15:48:19ZengMDPI AGWater2073-44412021-06-01131772177210.3390/w13131772Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP MeasurementsJuan Alfonso Figuérez0Javier González1Álvaro Galán2Hidralab Ingeniería y Desarrollos, S.L., Spin-Off UCLM, Hydraulics Laboratory, University of Castilla-La Mancha, Av. Pedriza-Camino Moledores s/n, 13071 Ciudad Real, SpainDepartment of Civil Engineering, University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, SpainDepartment of Civil Engineering, University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, SpainBoat-mounted Acoustic Doppler Current Profilers (ADCP) are commonly used to measure the streamwise velocity distribution and discharge in rivers and open channels. Generally, the method used to integrate the measurements is the velocity-area method, which consists of a discrete integration of flow velocity over the whole cross-section. The discrete integration is accomplished independently in the vertical and transversal direction without assessing the hydraulic coherence between both dimensions. To address these limitations, a new alternative method for estimating the discharge and its associated uncertainty is here proposed. The new approach uses a validated 2D RANS hydraulic model to numerically compute the streamwise velocity distribution. The hydraulic model is fitted using state estimation (SE) techniques to accurately reproduce the measurement field and hydraulic behaviour of the free-surface stream. The performance of the hydraulic model has been validated with measurements on two different trapezoidal cross-sections in a real channel, even with asymmetric velocity distribution. The proposed method allows extrapolation of measurement information to other points where there are no measurements with a solid and consistent hydraulic basis. The 2D-hydraulic velocity model (2D-HVM) approach discharge values have been proven more accurate than the ones obtained using velocity-area method, thank to the enhanced use of the measurements in addition to the hydraulic behaviour represented by the 2D RANS model.https://www.mdpi.com/2073-4441/13/13/1772discharge measurementADCPuncertainty analysisvelocity-area method2D-RANS streamwise velocity model2D-HVM flowrate estimation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juan Alfonso Figuérez Javier González Álvaro Galán |
spellingShingle |
Juan Alfonso Figuérez Javier González Álvaro Galán Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements Water discharge measurement ADCP uncertainty analysis velocity-area method 2D-RANS streamwise velocity model 2D-HVM flowrate estimation |
author_facet |
Juan Alfonso Figuérez Javier González Álvaro Galán |
author_sort |
Juan Alfonso Figuérez |
title |
Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements |
title_short |
Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements |
title_full |
Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements |
title_fullStr |
Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements |
title_full_unstemmed |
Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements |
title_sort |
accurate open channel flowrate estimation using 2d rans modelization and adcp measurements |
publisher |
MDPI AG |
series |
Water |
issn |
2073-4441 |
publishDate |
2021-06-01 |
description |
Boat-mounted Acoustic Doppler Current Profilers (ADCP) are commonly used to measure the streamwise velocity distribution and discharge in rivers and open channels. Generally, the method used to integrate the measurements is the velocity-area method, which consists of a discrete integration of flow velocity over the whole cross-section. The discrete integration is accomplished independently in the vertical and transversal direction without assessing the hydraulic coherence between both dimensions. To address these limitations, a new alternative method for estimating the discharge and its associated uncertainty is here proposed. The new approach uses a validated 2D RANS hydraulic model to numerically compute the streamwise velocity distribution. The hydraulic model is fitted using state estimation (SE) techniques to accurately reproduce the measurement field and hydraulic behaviour of the free-surface stream. The performance of the hydraulic model has been validated with measurements on two different trapezoidal cross-sections in a real channel, even with asymmetric velocity distribution. The proposed method allows extrapolation of measurement information to other points where there are no measurements with a solid and consistent hydraulic basis. The 2D-hydraulic velocity model (2D-HVM) approach discharge values have been proven more accurate than the ones obtained using velocity-area method, thank to the enhanced use of the measurements in addition to the hydraulic behaviour represented by the 2D RANS model. |
topic |
discharge measurement ADCP uncertainty analysis velocity-area method 2D-RANS streamwise velocity model 2D-HVM flowrate estimation |
url |
https://www.mdpi.com/2073-4441/13/13/1772 |
work_keys_str_mv |
AT juanalfonsofiguerez accurateopenchannelflowrateestimationusing2dransmodelizationandadcpmeasurements AT javiergonzalez accurateopenchannelflowrateestimationusing2dransmodelizationandadcpmeasurements AT alvarogalan accurateopenchannelflowrateestimationusing2dransmodelizationandadcpmeasurements |
_version_ |
1721298188708610048 |