Recent Advances of Deep Learning in Bioinformatics and Computational Biology

Extracting inherent valuable knowledge from omics big data remains as a daunting problem in bioinformatics and computational biology. Deep learning, as an emerging branch from machine learning, has exhibited unprecedented performance in quite a few applications from academia and industry. We highlig...

Full description

Bibliographic Details
Main Authors: Binhua Tang, Zixiang Pan, Kang Yin, Asif Khateeb
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-03-01
Series:Frontiers in Genetics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fgene.2019.00214/full
Description
Summary:Extracting inherent valuable knowledge from omics big data remains as a daunting problem in bioinformatics and computational biology. Deep learning, as an emerging branch from machine learning, has exhibited unprecedented performance in quite a few applications from academia and industry. We highlight the difference and similarity in widely utilized models in deep learning studies, through discussing their basic structures, and reviewing diverse applications and disadvantages. We anticipate the work can serve as a meaningful perspective for further development of its theory, algorithm and application in bioinformatic and computational biology.
ISSN:1664-8021