Estimating expectation values using approximate quantum states

We introduce an approximate description of an $N$-qubit state, which contains sufficient information to estimate the expectation value of any observable to a precision that is upper bounded by the ratio of a suitably-defined seminorm of the observable to the square root of the number of the system&#...

Full description

Bibliographic Details
Main Authors: Marco Paini, Amir Kalev, Dan Padilha, Brendan Ruck
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021-03-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2021-03-16-413/pdf/
id doaj-6c6934fefcb244aeaa616da4817e8dca
record_format Article
spelling doaj-6c6934fefcb244aeaa616da4817e8dca2021-03-16T14:47:35ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2021-03-01541310.22331/q-2021-03-16-41310.22331/q-2021-03-16-413Estimating expectation values using approximate quantum statesMarco PainiAmir KalevDan PadilhaBrendan RuckWe introduce an approximate description of an $N$-qubit state, which contains sufficient information to estimate the expectation value of any observable to a precision that is upper bounded by the ratio of a suitably-defined seminorm of the observable to the square root of the number of the system's identical preparations $M$, with no explicit dependence on $N$. We describe an operational procedure for constructing the approximate description of the state that requires, besides the quantum state preparation, only single-qubit rotations followed by single-qubit measurements. We show that following this procedure, the cardinality of the resulting description of the state grows as $3MN$. We test the proposed method on Rigetti's quantum processor unit with 12, 16 and 25 qubits for random states and random observables, and find an excellent agreement with the theory, despite experimental errors.https://quantum-journal.org/papers/q-2021-03-16-413/pdf/
collection DOAJ
language English
format Article
sources DOAJ
author Marco Paini
Amir Kalev
Dan Padilha
Brendan Ruck
spellingShingle Marco Paini
Amir Kalev
Dan Padilha
Brendan Ruck
Estimating expectation values using approximate quantum states
Quantum
author_facet Marco Paini
Amir Kalev
Dan Padilha
Brendan Ruck
author_sort Marco Paini
title Estimating expectation values using approximate quantum states
title_short Estimating expectation values using approximate quantum states
title_full Estimating expectation values using approximate quantum states
title_fullStr Estimating expectation values using approximate quantum states
title_full_unstemmed Estimating expectation values using approximate quantum states
title_sort estimating expectation values using approximate quantum states
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
series Quantum
issn 2521-327X
publishDate 2021-03-01
description We introduce an approximate description of an $N$-qubit state, which contains sufficient information to estimate the expectation value of any observable to a precision that is upper bounded by the ratio of a suitably-defined seminorm of the observable to the square root of the number of the system's identical preparations $M$, with no explicit dependence on $N$. We describe an operational procedure for constructing the approximate description of the state that requires, besides the quantum state preparation, only single-qubit rotations followed by single-qubit measurements. We show that following this procedure, the cardinality of the resulting description of the state grows as $3MN$. We test the proposed method on Rigetti's quantum processor unit with 12, 16 and 25 qubits for random states and random observables, and find an excellent agreement with the theory, despite experimental errors.
url https://quantum-journal.org/papers/q-2021-03-16-413/pdf/
work_keys_str_mv AT marcopaini estimatingexpectationvaluesusingapproximatequantumstates
AT amirkalev estimatingexpectationvaluesusingapproximatequantumstates
AT danpadilha estimatingexpectationvaluesusingapproximatequantumstates
AT brendanruck estimatingexpectationvaluesusingapproximatequantumstates
_version_ 1724219654996492288