Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastri...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-01-01
|
Series: | Frontiers in Cellular and Infection Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/full |
id |
doaj-6c5041c1231a4ed293c479191e46db5d |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Julien Revaud Julien Revaud Yves Unterfinger Nicolas Rol Muhammad Suleman Julia Shaw Sandra Galea Françoise Gavard Sandrine A. Lacour Muriel Coulpier Nicolas Versillé Menzo Havenga Bernard Klonjkowski Gina Zanella Stéphane Biacchesi Nathalie Cordonnier Blaise Corthésy Juliette Ben Arous Jennifer P. Richardson |
spellingShingle |
Julien Revaud Julien Revaud Yves Unterfinger Nicolas Rol Muhammad Suleman Julia Shaw Sandra Galea Françoise Gavard Sandrine A. Lacour Muriel Coulpier Nicolas Versillé Menzo Havenga Bernard Klonjkowski Gina Zanella Stéphane Biacchesi Nathalie Cordonnier Blaise Corthésy Juliette Ben Arous Jennifer P. Richardson Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination Frontiers in Cellular and Infection Microbiology oral vaccination viral vector adenovirus M cell Peyer's patch |
author_facet |
Julien Revaud Julien Revaud Yves Unterfinger Nicolas Rol Muhammad Suleman Julia Shaw Sandra Galea Françoise Gavard Sandrine A. Lacour Muriel Coulpier Nicolas Versillé Menzo Havenga Bernard Klonjkowski Gina Zanella Stéphane Biacchesi Nathalie Cordonnier Blaise Corthésy Juliette Ben Arous Jennifer P. Richardson |
author_sort |
Julien Revaud |
title |
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination |
title_short |
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination |
title_full |
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination |
title_fullStr |
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination |
title_full_unstemmed |
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination |
title_sort |
firewalls prevent systemic dissemination of vectors derived from human adenovirus type 5 and suppress production of transgene-encoded antigen in a murine model of oral vaccination |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Cellular and Infection Microbiology |
issn |
2235-2988 |
publishDate |
2018-01-01 |
description |
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. |
topic |
oral vaccination viral vector adenovirus M cell Peyer's patch |
url |
http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/full |
work_keys_str_mv |
AT julienrevaud firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT julienrevaud firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT yvesunterfinger firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT nicolasrol firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT muhammadsuleman firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT juliashaw firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT sandragalea firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT francoisegavard firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT sandrinealacour firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT murielcoulpier firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT nicolasversille firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT menzohavenga firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT bernardklonjkowski firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT ginazanella firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT stephanebiacchesi firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT nathaliecordonnier firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT blaisecorthesy firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT juliettebenarous firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination AT jenniferprichardson firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination |
_version_ |
1725991376579985408 |
spelling |
doaj-6c5041c1231a4ed293c479191e46db5d2020-11-24T21:23:44ZengFrontiers Media S.A.Frontiers in Cellular and Infection Microbiology2235-29882018-01-01810.3389/fcimb.2018.00006319907Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral VaccinationJulien Revaud0Julien Revaud1Yves Unterfinger2Nicolas Rol3Muhammad Suleman4Julia Shaw5Sandra Galea6Françoise Gavard7Sandrine A. Lacour8Muriel Coulpier9Nicolas Versillé10Menzo Havenga11Bernard Klonjkowski12Gina Zanella13Stéphane Biacchesi14Nathalie Cordonnier15Blaise Corthésy16Juliette Ben Arous17Jennifer P. Richardson18UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceSEPPIC Paris La Défense, Paris, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceR&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, SwitzerlandUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceSEPPIC Paris La Défense, Paris, FranceBatavia Biosciences B.V., Leiden, NetherlandsUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceAnses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, FranceVIM, INRA, Université Paris-Saclay, Jouy-en-Josas, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceR&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, SwitzerlandSEPPIC Paris La Défense, Paris, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceTo define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/fulloral vaccinationviral vectoradenovirusM cellPeyer's patch |