Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastri...

Full description

Bibliographic Details
Main Authors: Julien Revaud, Yves Unterfinger, Nicolas Rol, Muhammad Suleman, Julia Shaw, Sandra Galea, Françoise Gavard, Sandrine A. Lacour, Muriel Coulpier, Nicolas Versillé, Menzo Havenga, Bernard Klonjkowski, Gina Zanella, Stéphane Biacchesi, Nathalie Cordonnier, Blaise Corthésy, Juliette Ben Arous, Jennifer P. Richardson
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-01-01
Series:Frontiers in Cellular and Infection Microbiology
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/full
id doaj-6c5041c1231a4ed293c479191e46db5d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Julien Revaud
Julien Revaud
Yves Unterfinger
Nicolas Rol
Muhammad Suleman
Julia Shaw
Sandra Galea
Françoise Gavard
Sandrine A. Lacour
Muriel Coulpier
Nicolas Versillé
Menzo Havenga
Bernard Klonjkowski
Gina Zanella
Stéphane Biacchesi
Nathalie Cordonnier
Blaise Corthésy
Juliette Ben Arous
Jennifer P. Richardson
spellingShingle Julien Revaud
Julien Revaud
Yves Unterfinger
Nicolas Rol
Muhammad Suleman
Julia Shaw
Sandra Galea
Françoise Gavard
Sandrine A. Lacour
Muriel Coulpier
Nicolas Versillé
Menzo Havenga
Bernard Klonjkowski
Gina Zanella
Stéphane Biacchesi
Nathalie Cordonnier
Blaise Corthésy
Juliette Ben Arous
Jennifer P. Richardson
Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
Frontiers in Cellular and Infection Microbiology
oral vaccination
viral vector
adenovirus
M cell
Peyer's patch
author_facet Julien Revaud
Julien Revaud
Yves Unterfinger
Nicolas Rol
Muhammad Suleman
Julia Shaw
Sandra Galea
Françoise Gavard
Sandrine A. Lacour
Muriel Coulpier
Nicolas Versillé
Menzo Havenga
Bernard Klonjkowski
Gina Zanella
Stéphane Biacchesi
Nathalie Cordonnier
Blaise Corthésy
Juliette Ben Arous
Jennifer P. Richardson
author_sort Julien Revaud
title Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
title_short Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
title_full Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
title_fullStr Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
title_full_unstemmed Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination
title_sort firewalls prevent systemic dissemination of vectors derived from human adenovirus type 5 and suppress production of transgene-encoded antigen in a murine model of oral vaccination
publisher Frontiers Media S.A.
series Frontiers in Cellular and Infection Microbiology
issn 2235-2988
publishDate 2018-01-01
description To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.
topic oral vaccination
viral vector
adenovirus
M cell
Peyer's patch
url http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/full
work_keys_str_mv AT julienrevaud firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT julienrevaud firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT yvesunterfinger firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT nicolasrol firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT muhammadsuleman firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT juliashaw firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT sandragalea firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT francoisegavard firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT sandrinealacour firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT murielcoulpier firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT nicolasversille firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT menzohavenga firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT bernardklonjkowski firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT ginazanella firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT stephanebiacchesi firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT nathaliecordonnier firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT blaisecorthesy firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT juliettebenarous firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
AT jenniferprichardson firewallspreventsystemicdisseminationofvectorsderivedfromhumanadenovirustype5andsuppressproductionoftransgeneencodedantigeninamurinemodeloforalvaccination
_version_ 1725991376579985408
spelling doaj-6c5041c1231a4ed293c479191e46db5d2020-11-24T21:23:44ZengFrontiers Media S.A.Frontiers in Cellular and Infection Microbiology2235-29882018-01-01810.3389/fcimb.2018.00006319907Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral VaccinationJulien Revaud0Julien Revaud1Yves Unterfinger2Nicolas Rol3Muhammad Suleman4Julia Shaw5Sandra Galea6Françoise Gavard7Sandrine A. Lacour8Muriel Coulpier9Nicolas Versillé10Menzo Havenga11Bernard Klonjkowski12Gina Zanella13Stéphane Biacchesi14Nathalie Cordonnier15Blaise Corthésy16Juliette Ben Arous17Jennifer P. Richardson18UMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceSEPPIC Paris La Défense, Paris, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceR&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, SwitzerlandUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceSEPPIC Paris La Défense, Paris, FranceBatavia Biosciences B.V., Leiden, NetherlandsUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceAnses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, FranceVIM, INRA, Université Paris-Saclay, Jouy-en-Josas, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceR&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois, Lausanne, SwitzerlandSEPPIC Paris La Défense, Paris, FranceUMR Virologie INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, FranceTo define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.http://journal.frontiersin.org/article/10.3389/fcimb.2018.00006/fulloral vaccinationviral vectoradenovirusM cellPeyer's patch