Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina.
The AutoDock family of software has been widely used in protein-ligand docking research. This study compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds active against HIV protease.Both programs were used to rank the members of two che...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-08-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2915912?pdf=render |
id |
doaj-6c3ef5e398554d1ab681a253d27576ea |
---|---|
record_format |
Article |
spelling |
doaj-6c3ef5e398554d1ab681a253d27576ea2020-11-25T01:52:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-08-0158e1195510.1371/journal.pone.0011955Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina.Max W ChangChristian AyeniSebastian BreuerBruce E TorbettThe AutoDock family of software has been widely used in protein-ligand docking research. This study compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds active against HIV protease.Both programs were used to rank the members of two chemical libraries, each containing experimentally verified binders to HIV protease. In the case of the NCI Diversity Set II, both AutoDock 4 and Vina were able to select active compounds significantly better than random (AUC = 0.69 and 0.68, respectively; p<0.001). The binding energy predictions were highly correlated in this case, with r = 0.63 and iota = 0.82. For a set of larger, more flexible compounds from the Directory of Universal Decoys, the binding energy predictions were not correlated, and only Vina was able to rank compounds significantly better than random.In ranking smaller molecules with few rotatable bonds, AutoDock 4 and Vina were equally capable, though both exhibited a size-related bias in scoring. However, as Vina executes more quickly and is able to more accurately rank larger molecules, researchers should look to it first when undertaking a virtual screen.http://europepmc.org/articles/PMC2915912?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Max W Chang Christian Ayeni Sebastian Breuer Bruce E Torbett |
spellingShingle |
Max W Chang Christian Ayeni Sebastian Breuer Bruce E Torbett Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS ONE |
author_facet |
Max W Chang Christian Ayeni Sebastian Breuer Bruce E Torbett |
author_sort |
Max W Chang |
title |
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. |
title_short |
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. |
title_full |
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. |
title_fullStr |
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. |
title_full_unstemmed |
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. |
title_sort |
virtual screening for hiv protease inhibitors: a comparison of autodock 4 and vina. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2010-08-01 |
description |
The AutoDock family of software has been widely used in protein-ligand docking research. This study compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds active against HIV protease.Both programs were used to rank the members of two chemical libraries, each containing experimentally verified binders to HIV protease. In the case of the NCI Diversity Set II, both AutoDock 4 and Vina were able to select active compounds significantly better than random (AUC = 0.69 and 0.68, respectively; p<0.001). The binding energy predictions were highly correlated in this case, with r = 0.63 and iota = 0.82. For a set of larger, more flexible compounds from the Directory of Universal Decoys, the binding energy predictions were not correlated, and only Vina was able to rank compounds significantly better than random.In ranking smaller molecules with few rotatable bonds, AutoDock 4 and Vina were equally capable, though both exhibited a size-related bias in scoring. However, as Vina executes more quickly and is able to more accurately rank larger molecules, researchers should look to it first when undertaking a virtual screen. |
url |
http://europepmc.org/articles/PMC2915912?pdf=render |
work_keys_str_mv |
AT maxwchang virtualscreeningforhivproteaseinhibitorsacomparisonofautodock4andvina AT christianayeni virtualscreeningforhivproteaseinhibitorsacomparisonofautodock4andvina AT sebastianbreuer virtualscreeningforhivproteaseinhibitorsacomparisonofautodock4andvina AT bruceetorbett virtualscreeningforhivproteaseinhibitorsacomparisonofautodock4andvina |
_version_ |
1724994077061021696 |