Comparative transcriptomic analysis of <it>Porphyromonas gingivalis </it>biofilm and planktonic cells

<p>Abstract</p> <p>Background</p> <p><it>Porphyromonas gingivalis </it>in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compar...

Full description

Bibliographic Details
Main Authors: Lissel J Patricia, Slakeski Nada, Dashper Stuart G, Boyce John D, Seers Christine A, Lo Alvin W, Reynolds Eric C
Format: Article
Language:English
Published: BMC 2009-01-01
Series:BMC Microbiology
Online Access:http://www.biomedcentral.com/1471-2180/9/18
Description
Summary:<p>Abstract</p> <p>Background</p> <p><it>Porphyromonas gingivalis </it>in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compared the global gene expression of a <it>P. gingivalis </it>biofilm with that of its planktonic counterpart grown in the same continuous culture.</p> <p>Results</p> <p>Approximately 18% (377 genes, at 1.5 fold or more, <it>P</it>-value < 0.01) of the <it>P. gingivalis </it>genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups and carriers. A number of genes encoding transport and binding proteins were up-regulated in <it>P. gingivalis </it>biofilm cells. Several genes predicted to encode proteins involved in signal transduction and transcriptional regulation were differentially regulated and may be important in the regulation of biofilm growth.</p> <p>Conclusion</p> <p>This study analyzing global gene expression provides insight into the adaptive response of <it>P. gingivalis </it>to biofilm growth, in particular showing a down regulation of genes involved in growth and metabolic activity.</p>
ISSN:1471-2180