Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development
<p>Abstract</p> <p>Background</p> <p>Vertebrate neural development requires precise coordination of cell proliferation and cell specification to guide orderly transition of mitotically active precursor cells into different types of post-mitotic neurons and glia. Lateral...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2001-07-01
|
Series: | BMC Developmental Biology |
Online Access: | http://www.biomedcentral.com/1471-213X/1/13 |
id |
doaj-6c28fbb5d30b4fcdb3fcd42fe1d15aef |
---|---|
record_format |
Article |
spelling |
doaj-6c28fbb5d30b4fcdb3fcd42fe1d15aef2020-11-25T01:13:45ZengBMCBMC Developmental Biology1471-213X2001-07-01111310.1186/1471-213X-1-13Delta-Notch signaling and lateral inhibition in zebrafish spinal cord developmentGivan Lee AnneAppel BruceEisen Judith S<p>Abstract</p> <p>Background</p> <p>Vertebrate neural development requires precise coordination of cell proliferation and cell specification to guide orderly transition of mitotically active precursor cells into different types of post-mitotic neurons and glia. Lateral inhibition, mediated by the Delta-Notch signaling pathway, may provide a mechanism to regulate proliferation and specification in the vertebrate nervous system. We examined <it>delta</it> and <it>notch</it> gene expression in zebrafish embryos and tested the role of lateral inhibition in spinal cord patterning by ablating cells and genetically disrupting Delta-Notch signaling.</p> <p>Results</p> <p>Zebrafish embryos express multiple <it>delta</it> and <it>notch</it> genes throughout the developing nervous system. All or most proliferative precursors appeared to express <it>notch</it> genes whereas subsets of precursors and post-mitotic neurons expressed <it>delta</it> genes. When we ablated identified primary motor neurons soon after they were born, they were replaced, indicating that specified neurons laterally inhibit neighboring precursors. Mutation of a <it>delta</it> gene caused precursor cells of the trunk neural tube to cease dividing prematurely and develop as neurons. Additionally, mutant embryos had excess early specified neurons, with fates appropriate for their normal positions within the neural tube, and a concomitant deficit of late specified cells.</p> <p>Conclusions</p> <p>Our results are consistent with the idea that zebrafish Delta proteins, expressed by newly specified neurons, promote Notch activity in neighboring precursors. This signaling is required to maintain a proliferative precursor population and generate late-born neurons and glia. Thus, Delta-Notch signaling may diversify vertebrate neural cell fates by coordinating cell cycle control and cell specification.</p> http://www.biomedcentral.com/1471-213X/1/13 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Givan Lee Anne Appel Bruce Eisen Judith S |
spellingShingle |
Givan Lee Anne Appel Bruce Eisen Judith S Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development BMC Developmental Biology |
author_facet |
Givan Lee Anne Appel Bruce Eisen Judith S |
author_sort |
Givan Lee Anne |
title |
Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development |
title_short |
Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development |
title_full |
Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development |
title_fullStr |
Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development |
title_full_unstemmed |
Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development |
title_sort |
delta-notch signaling and lateral inhibition in zebrafish spinal cord development |
publisher |
BMC |
series |
BMC Developmental Biology |
issn |
1471-213X |
publishDate |
2001-07-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Vertebrate neural development requires precise coordination of cell proliferation and cell specification to guide orderly transition of mitotically active precursor cells into different types of post-mitotic neurons and glia. Lateral inhibition, mediated by the Delta-Notch signaling pathway, may provide a mechanism to regulate proliferation and specification in the vertebrate nervous system. We examined <it>delta</it> and <it>notch</it> gene expression in zebrafish embryos and tested the role of lateral inhibition in spinal cord patterning by ablating cells and genetically disrupting Delta-Notch signaling.</p> <p>Results</p> <p>Zebrafish embryos express multiple <it>delta</it> and <it>notch</it> genes throughout the developing nervous system. All or most proliferative precursors appeared to express <it>notch</it> genes whereas subsets of precursors and post-mitotic neurons expressed <it>delta</it> genes. When we ablated identified primary motor neurons soon after they were born, they were replaced, indicating that specified neurons laterally inhibit neighboring precursors. Mutation of a <it>delta</it> gene caused precursor cells of the trunk neural tube to cease dividing prematurely and develop as neurons. Additionally, mutant embryos had excess early specified neurons, with fates appropriate for their normal positions within the neural tube, and a concomitant deficit of late specified cells.</p> <p>Conclusions</p> <p>Our results are consistent with the idea that zebrafish Delta proteins, expressed by newly specified neurons, promote Notch activity in neighboring precursors. This signaling is required to maintain a proliferative precursor population and generate late-born neurons and glia. Thus, Delta-Notch signaling may diversify vertebrate neural cell fates by coordinating cell cycle control and cell specification.</p> |
url |
http://www.biomedcentral.com/1471-213X/1/13 |
work_keys_str_mv |
AT givanleeanne deltanotchsignalingandlateralinhibitioninzebrafishspinalcorddevelopment AT appelbruce deltanotchsignalingandlateralinhibitioninzebrafishspinalcorddevelopment AT eisenjudiths deltanotchsignalingandlateralinhibitioninzebrafishspinalcorddevelopment |
_version_ |
1725160324134338560 |