EFFECT OF OZONE AND AUTOHYDROLYSIS PRETREATMENTS ON ENZYMATIC DIGESTIBILITY OF COASTAL BERMUDA GRASS

Coastal Bermuda grass (CBG) has been shown to have potential as a biomass feedstock for sugar production. In this study, the effectiveness of ozone pretreatment for CBG to improve the sugar recovery via enzyme hydrolysis was investigated. Raw CBG and autohydrolysis-treated CBG were pretreated with o...

Full description

Bibliographic Details
Main Authors: Jung Myoung Lee, Hasan Jameel, Richard A. Venditti
Format: Article
Language:English
Published: North Carolina State University 2010-04-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_05_2_1084_Lee_JV_Ozone_Autohydrolysis_Pretreated_Bermuda_Grass/616
Description
Summary:Coastal Bermuda grass (CBG) has been shown to have potential as a biomass feedstock for sugar production. In this study, the effectiveness of ozone pretreatment for CBG to improve the sugar recovery via enzyme hydrolysis was investigated. Raw CBG and autohydrolysis-treated CBG were pretreated with ozone at ozone consumption of 1.8 to 26.4 % (w/w) at room temperature. Lignin degradation and hemicellulose solubilization increased with increased ozone consumption. At 26.4% ozone consumption by weight on CBG the amount of lignin in the CBG was reduced by 34%. Autohydrolysis of CBG increased the reactivity of cellulose, hemicellulose, and lignin with ozone. The maximum total sugar recovery after enzymatic hydrolysis was 32% for a 14.0% consumption of ozone on raw CBG. For CBG samples pretreated with autohydrolysis followed by a 3.1% ozone consumption pretreatment the maximum total sugar recovery after enzyme hydrolysis was 40.1%. Autohydrolysis pretreatment followed by enzyme hydrolysis yielded a 36.4% sugar recovery, indicating that the application and benefits of ozone after autohydrolysis with the conditions studied herein are marginally better than autohydrolysis alone.
ISSN:1930-2126