Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect

Abstract Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the “coffee-...

Full description

Bibliographic Details
Main Authors: Kun Liang, Dingwei Li, Huihui Ren, Momo Zhao, Hong Wang, Mengfan Ding, Guangwei Xu, Xiaolong Zhao, Shibing Long, Siyuan Zhu, Pei Sheng, Wenbin Li, Xiao Lin, Bowen Zhu
Format: Article
Language:English
Published: SpringerOpen 2021-08-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-021-00694-4
Description
Summary:Abstract Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the “coffee-ring” effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V−1 s−1 and a low subthreshold swing of 105 mV dec−1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔV th = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔV th = −0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal–oxide–semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.
ISSN:2311-6706
2150-5551