EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE

Reconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout) is often recognizable, which provides valuable information for understand...

Full description

Bibliographic Details
Main Authors: A. Baligh Jahromi, G. Sohn
Format: Article
Language:English
Published: Copernicus Publications 2015-08-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/417/2015/isprsannals-II-3-W5-417-2015.pdf
id doaj-6c1a3982186b4412859bf6775c255cc9
record_format Article
spelling doaj-6c1a3982186b4412859bf6775c255cc92020-11-24T21:22:33ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502015-08-01II-3-W541742410.5194/isprsannals-II-3-W5-417-2015EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGEA. Baligh Jahromi0G. Sohn1GeoICT Laboratory, Department of Earth, Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, CanadaGeoICT Laboratory, Department of Earth, Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, CanadaReconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout) is often recognizable, which provides valuable information for understanding the indoor scenes. Most of the current methods define the scene layout as a single cubic primitive. This domain-specific knowledge is often not valid in many indoors where multiple corridors are linked each other. In this paper, we aim to address this problem by hypothesizing-verifying multiple cubic primitives representing the indoor scene layout. This method utilizes middle-level perceptual organization, and relies on finding the ground-wall and ceiling-wall boundaries using detected line segments and the orthogonal vanishing points. A comprehensive interpretation of these edge relations is often hindered due to shadows and occlusions. To handle this problem, the proposed method introduces virtual rays which aid in the creation of a physically valid cubic structure by using orthogonal vanishing points. The straight line segments are extracted from the single image and the orthogonal vanishing points are estimated by employing the RANSAC approach. Many scene layout hypotheses are created through intersecting random line segments and virtual rays of vanishing points. The created hypotheses are evaluated by a geometric reasoning-based objective function to find the best fitting hypothesis to the image. The best model hypothesis offered with the highest score is then converted to a 3D model. The proposed method is fully automatic and no human intervention is necessary to obtain an approximate 3D reconstruction.http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/417/2015/isprsannals-II-3-W5-417-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Baligh Jahromi
G. Sohn
spellingShingle A. Baligh Jahromi
G. Sohn
EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet A. Baligh Jahromi
G. Sohn
author_sort A. Baligh Jahromi
title EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
title_short EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
title_full EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
title_fullStr EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
title_full_unstemmed EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
title_sort edge based 3d indoor corridor modeling using a single image
publisher Copernicus Publications
series ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 2194-9042
2194-9050
publishDate 2015-08-01
description Reconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout) is often recognizable, which provides valuable information for understanding the indoor scenes. Most of the current methods define the scene layout as a single cubic primitive. This domain-specific knowledge is often not valid in many indoors where multiple corridors are linked each other. In this paper, we aim to address this problem by hypothesizing-verifying multiple cubic primitives representing the indoor scene layout. This method utilizes middle-level perceptual organization, and relies on finding the ground-wall and ceiling-wall boundaries using detected line segments and the orthogonal vanishing points. A comprehensive interpretation of these edge relations is often hindered due to shadows and occlusions. To handle this problem, the proposed method introduces virtual rays which aid in the creation of a physically valid cubic structure by using orthogonal vanishing points. The straight line segments are extracted from the single image and the orthogonal vanishing points are estimated by employing the RANSAC approach. Many scene layout hypotheses are created through intersecting random line segments and virtual rays of vanishing points. The created hypotheses are evaluated by a geometric reasoning-based objective function to find the best fitting hypothesis to the image. The best model hypothesis offered with the highest score is then converted to a 3D model. The proposed method is fully automatic and no human intervention is necessary to obtain an approximate 3D reconstruction.
url http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/417/2015/isprsannals-II-3-W5-417-2015.pdf
work_keys_str_mv AT abalighjahromi edgebased3dindoorcorridormodelingusingasingleimage
AT gsohn edgebased3dindoorcorridormodelingusingasingleimage
_version_ 1725995391974899712