Nontrivial isometries on sp(α)
sp(α) is a Banach space of sequences x with ‖x‖=(∑i=0∞|xi|p+α∑i=0∞|xi+1−xi|p)1/p. For 1<p<∞, p≠2, 0<α<∞, α≠1, there are no nontrivial surjective isometries in sp(α). It has been conjectured that there are no nontrivial isometries. This note gives two distinct counterexamples to this conj...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1982-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171282000222 |
id |
doaj-6c1840db4ced4d898e79d48077219db8 |
---|---|
record_format |
Article |
spelling |
doaj-6c1840db4ced4d898e79d48077219db82020-11-24T23:01:34ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251982-01-015225726110.1155/S0161171282000222Nontrivial isometries on sp(α)Stephen L. Campbell0Department of Mathematics, North Carolina State University, Raleigh 27650, North Carolina, USAsp(α) is a Banach space of sequences x with ‖x‖=(∑i=0∞|xi|p+α∑i=0∞|xi+1−xi|p)1/p. For 1<p<∞, p≠2, 0<α<∞, α≠1, there are no nontrivial surjective isometries in sp(α). It has been conjectured that there are no nontrivial isometries. This note gives two distinct counterexamples to this conjecture and a partial affirmative answer for the case of isometries with finite codimension.http://dx.doi.org/10.1155/S0161171282000222isometrysequential Banach spaceBanach space. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stephen L. Campbell |
spellingShingle |
Stephen L. Campbell Nontrivial isometries on sp(α) International Journal of Mathematics and Mathematical Sciences isometry sequential Banach space Banach space. |
author_facet |
Stephen L. Campbell |
author_sort |
Stephen L. Campbell |
title |
Nontrivial isometries on sp(α) |
title_short |
Nontrivial isometries on sp(α) |
title_full |
Nontrivial isometries on sp(α) |
title_fullStr |
Nontrivial isometries on sp(α) |
title_full_unstemmed |
Nontrivial isometries on sp(α) |
title_sort |
nontrivial isometries on sp(α) |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1982-01-01 |
description |
sp(α) is a Banach space of sequences x with ‖x‖=(∑i=0∞|xi|p+α∑i=0∞|xi+1−xi|p)1/p. For 1<p<∞, p≠2, 0<α<∞, α≠1, there are no nontrivial surjective isometries in sp(α). It has been conjectured that there are no nontrivial isometries. This note gives two distinct counterexamples to this conjecture and a partial affirmative answer for the case of isometries with finite codimension. |
topic |
isometry sequential Banach space Banach space. |
url |
http://dx.doi.org/10.1155/S0161171282000222 |
work_keys_str_mv |
AT stephenlcampbell nontrivialisometriesonspa |
_version_ |
1725639149313064960 |