Study on the Adsorption Properties of Graphene Oxide/Laponite RD/Chitosan Composites

A novel Graphene oxide/Laponite RD/Chitosan ternary composite was synthesized by sol-gel method and freeze-drying method. The Laponite RD was silanized by 3-aminopropyltriethoxysilane (APTES). Graphene oxide (GO) was prepared by an improved Hummers method. Under the acidic conditions, self-assembly...

Full description

Bibliographic Details
Main Authors: Wenjie Du, Rui Ma, Zhiyan Liu, Gang Yang, Tao Chen
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/12/3224
Description
Summary:A novel Graphene oxide/Laponite RD/Chitosan ternary composite was synthesized by sol-gel method and freeze-drying method. The Laponite RD was silanized by 3-aminopropyltriethoxysilane (APTES). Graphene oxide (GO) was prepared by an improved Hummers method. Under the acidic conditions, self-assembly recombination was realized by electrostatic interaction between modified Laponite RD and GO. The results from Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy confirmed that the modified Laponite RD was successfully compounded with GO, and the composite is laminated and stacked. The results from BET (Brunauer–Emmett–Teller) methods found that the BET-specific surface area of the hybrid aerogel significantly increased with the increase of the doping content of the composite, and the specific surface area of the aerogel composite with 20% doping content reached 81 m<sup>2</sup>/g. The structure of aerogel is porous, and there are numerous holes in the interior, which is closely related to adsorption properties. Thermogravimetric analysis (TG) test was used to explore the change of thermal properties of hybrid aerogel materials, and it was found that the addition of composite increased the initial decomposition temperature and thermal stability of hybrid aerogel. Finally, the potential applications of aerogel were tested, such as methylene blue adsorption and CO<sub>2</sub> adsorption.
ISSN:1996-1944