Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments

<p>Seagrass meadows are autotrophic ecosystems acting as carbon sinks, but they have also been shown to be sources of carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4&l...

Full description

Bibliographic Details
Main Authors: C. Burkholz, N. Garcias-Bonet, C. M. Duarte
Format: Article
Language:English
Published: Copernicus Publications 2020-04-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf
id doaj-6bed2efdb7194d0a9d0941bd36c99fac
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Burkholz
C. Burkholz
N. Garcias-Bonet
N. Garcias-Bonet
C. M. Duarte
spellingShingle C. Burkholz
C. Burkholz
N. Garcias-Bonet
N. Garcias-Bonet
C. M. Duarte
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
Biogeosciences
author_facet C. Burkholz
C. Burkholz
N. Garcias-Bonet
N. Garcias-Bonet
C. M. Duarte
author_sort C. Burkholz
title Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
title_short Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
title_full Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
title_fullStr Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
title_full_unstemmed Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
title_sort warming enhances carbon dioxide and methane fluxes from red sea seagrass (<i>halophila stipulacea</i>) sediments
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2020-04-01
description <p>Seagrass meadows are autotrophic ecosystems acting as carbon sinks, but they have also been shown to be sources of carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4</sub></span>). Seagrasses can be negatively affected by increasing seawater temperatures, but the effects of warming on <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in seagrass meadows have not yet been reported. Here, we examine the effect of two disturbances on air–seawater fluxes of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> in Red Sea <i>Halophila stipulacea</i> communities compared to adjacent unvegetated sediments using cavity ring-down spectroscopy. We first characterized <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated and adjacent unvegetated sediments, and then experimentally examined their response, along with that of the carbon (C) isotopic signature of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span>, to gradual warming from 25&thinsp;<span class="inline-formula"><sup>∘</sup></span>C (winter seawater temperature) to 37&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, 2&thinsp;<span class="inline-formula"><sup>∘</sup></span>C above current maximum temperature. In addition, we assessed the response to prolonged darkness, thereby providing insights into the possible role of suppressing plant photosynthesis in supporting <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes. We detected 6-fold-higher <span class="inline-formula">CO<sub>2</sub></span> fluxes in vegetated compared to bare sediments, as well as 10- to 100-fold-higher <span class="inline-formula">CH<sub>4</sub></span> fluxes. Warming led to an increase in net <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes, reaching average fluxes of 10&thinsp;422.18&thinsp;<span class="inline-formula">±</span>&thinsp;2570.12&thinsp;<span class="inline-formula">µ</span>mol&thinsp;<span class="inline-formula">CO<sub>2</sub></span>&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula">88.11±15.19</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, while <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes decreased over time in sediments maintained at 25&thinsp;<span class="inline-formula"><sup>∘</sup></span>C. Prolonged darkness led to an increase in <span class="inline-formula">CO<sub>2</sub></span> fluxes but a decrease in <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated sediments. These results add to previous research identifying Red Sea seagrass meadows as a significant source of <span class="inline-formula">CH<sub>4</sub></span>, while also indicating that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows, providing a feedback mechanism that may contribute to further enhancing global warming.</p>
url https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf
work_keys_str_mv AT cburkholz warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments
AT cburkholz warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments
AT ngarciasbonet warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments
AT ngarciasbonet warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments
AT cmduarte warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments
_version_ 1724833666630156288
spelling doaj-6bed2efdb7194d0a9d0941bd36c99fac2020-11-25T02:29:21ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-04-01171717173010.5194/bg-17-1717-2020Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sedimentsC. Burkholz0C. Burkholz1N. Garcias-Bonet2N. Garcias-Bonet3C. M. Duarte4Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi ArabiaUWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Crawley, WA, AustraliaRed Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabiacurrent address: Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles (Illes Balears), SpainRed Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia<p>Seagrass meadows are autotrophic ecosystems acting as carbon sinks, but they have also been shown to be sources of carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4</sub></span>). Seagrasses can be negatively affected by increasing seawater temperatures, but the effects of warming on <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in seagrass meadows have not yet been reported. Here, we examine the effect of two disturbances on air–seawater fluxes of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> in Red Sea <i>Halophila stipulacea</i> communities compared to adjacent unvegetated sediments using cavity ring-down spectroscopy. We first characterized <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated and adjacent unvegetated sediments, and then experimentally examined their response, along with that of the carbon (C) isotopic signature of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span>, to gradual warming from 25&thinsp;<span class="inline-formula"><sup>∘</sup></span>C (winter seawater temperature) to 37&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, 2&thinsp;<span class="inline-formula"><sup>∘</sup></span>C above current maximum temperature. In addition, we assessed the response to prolonged darkness, thereby providing insights into the possible role of suppressing plant photosynthesis in supporting <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes. We detected 6-fold-higher <span class="inline-formula">CO<sub>2</sub></span> fluxes in vegetated compared to bare sediments, as well as 10- to 100-fold-higher <span class="inline-formula">CH<sub>4</sub></span> fluxes. Warming led to an increase in net <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes, reaching average fluxes of 10&thinsp;422.18&thinsp;<span class="inline-formula">±</span>&thinsp;2570.12&thinsp;<span class="inline-formula">µ</span>mol&thinsp;<span class="inline-formula">CO<sub>2</sub></span>&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula">88.11±15.19</span>&thinsp;<span class="inline-formula">µ</span>mol&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, while <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes decreased over time in sediments maintained at 25&thinsp;<span class="inline-formula"><sup>∘</sup></span>C. Prolonged darkness led to an increase in <span class="inline-formula">CO<sub>2</sub></span> fluxes but a decrease in <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated sediments. These results add to previous research identifying Red Sea seagrass meadows as a significant source of <span class="inline-formula">CH<sub>4</sub></span>, while also indicating that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows, providing a feedback mechanism that may contribute to further enhancing global warming.</p>https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf