Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments
<p>Seagrass meadows are autotrophic ecosystems acting as carbon sinks, but they have also been shown to be sources of carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4&l...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-04-01
|
Series: | Biogeosciences |
Online Access: | https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf |
id |
doaj-6bed2efdb7194d0a9d0941bd36c99fac |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Burkholz C. Burkholz N. Garcias-Bonet N. Garcias-Bonet C. M. Duarte |
spellingShingle |
C. Burkholz C. Burkholz N. Garcias-Bonet N. Garcias-Bonet C. M. Duarte Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments Biogeosciences |
author_facet |
C. Burkholz C. Burkholz N. Garcias-Bonet N. Garcias-Bonet C. M. Duarte |
author_sort |
C. Burkholz |
title |
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments |
title_short |
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments |
title_full |
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments |
title_fullStr |
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments |
title_full_unstemmed |
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments |
title_sort |
warming enhances carbon dioxide and methane fluxes from red sea seagrass (<i>halophila stipulacea</i>) sediments |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2020-04-01 |
description |
<p>Seagrass meadows are autotrophic ecosystems acting as carbon
sinks, but they have also been shown to be sources of carbon dioxide
(<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4</sub></span>). Seagrasses can be negatively affected by
increasing seawater temperatures, but the effects of warming on <span class="inline-formula">CO<sub>2</sub></span> and
<span class="inline-formula">CH<sub>4</sub></span> fluxes in seagrass meadows have not yet been reported. Here, we
examine the effect of two disturbances on air–seawater fluxes of <span class="inline-formula">CO<sub>2</sub></span>
and <span class="inline-formula">CH<sub>4</sub></span> in Red Sea <i>Halophila stipulacea</i> communities compared to adjacent unvegetated
sediments using cavity ring-down spectroscopy. We first characterized
<span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated and adjacent unvegetated
sediments, and then experimentally examined their response, along with that
of the carbon (C) isotopic signature of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span>, to gradual warming
from 25 <span class="inline-formula"><sup>∘</sup></span>C (winter seawater temperature) to 37 <span class="inline-formula"><sup>∘</sup></span>C, 2 <span class="inline-formula"><sup>∘</sup></span>C above current maximum temperature. In addition, we assessed
the response to prolonged darkness, thereby providing insights into the
possible role of suppressing plant photosynthesis in supporting <span class="inline-formula">CO<sub>2</sub></span> and
<span class="inline-formula">CH<sub>4</sub></span> fluxes. We detected 6-fold-higher <span class="inline-formula">CO<sub>2</sub></span> fluxes in vegetated
compared to bare sediments, as well as 10- to 100-fold-higher <span class="inline-formula">CH<sub>4</sub></span>
fluxes. Warming led to an increase in net <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes,
reaching average fluxes of 10 422.18 <span class="inline-formula">±</span> 2570.12 <span class="inline-formula">µ</span>mol <span class="inline-formula">CO<sub>2</sub></span> m<span class="inline-formula"><sup>−2</sup></span> d<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula">88.11±15.19</span> <span class="inline-formula">µ</span>mol <span class="inline-formula">CH<sub>4</sub></span> m<span class="inline-formula"><sup>−2</sup></span> d<span class="inline-formula"><sup>−1</sup></span>, while <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes decreased over time in
sediments maintained at 25 <span class="inline-formula"><sup>∘</sup></span>C. Prolonged darkness led to an
increase in <span class="inline-formula">CO<sub>2</sub></span> fluxes but a decrease in <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated
sediments. These results add to previous research identifying Red Sea
seagrass meadows as a significant source of <span class="inline-formula">CH<sub>4</sub></span>, while also indicating
that sublethal warming may lead to increased emissions of greenhouse gases
from seagrass meadows, providing a feedback mechanism that may contribute to
further enhancing global warming.</p> |
url |
https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf |
work_keys_str_mv |
AT cburkholz warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments AT cburkholz warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments AT ngarciasbonet warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments AT ngarciasbonet warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments AT cmduarte warmingenhancescarbondioxideandmethanefluxesfromredseaseagrassihalophilastipulaceaisediments |
_version_ |
1724833666630156288 |
spelling |
doaj-6bed2efdb7194d0a9d0941bd36c99fac2020-11-25T02:29:21ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-04-01171717173010.5194/bg-17-1717-2020Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sedimentsC. Burkholz0C. Burkholz1N. Garcias-Bonet2N. Garcias-Bonet3C. M. Duarte4Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi ArabiaUWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Crawley, WA, AustraliaRed Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabiacurrent address: Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles (Illes Balears), SpainRed Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia<p>Seagrass meadows are autotrophic ecosystems acting as carbon sinks, but they have also been shown to be sources of carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) and methane (<span class="inline-formula">CH<sub>4</sub></span>). Seagrasses can be negatively affected by increasing seawater temperatures, but the effects of warming on <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in seagrass meadows have not yet been reported. Here, we examine the effect of two disturbances on air–seawater fluxes of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> in Red Sea <i>Halophila stipulacea</i> communities compared to adjacent unvegetated sediments using cavity ring-down spectroscopy. We first characterized <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated and adjacent unvegetated sediments, and then experimentally examined their response, along with that of the carbon (C) isotopic signature of <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span>, to gradual warming from 25 <span class="inline-formula"><sup>∘</sup></span>C (winter seawater temperature) to 37 <span class="inline-formula"><sup>∘</sup></span>C, 2 <span class="inline-formula"><sup>∘</sup></span>C above current maximum temperature. In addition, we assessed the response to prolonged darkness, thereby providing insights into the possible role of suppressing plant photosynthesis in supporting <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes. We detected 6-fold-higher <span class="inline-formula">CO<sub>2</sub></span> fluxes in vegetated compared to bare sediments, as well as 10- to 100-fold-higher <span class="inline-formula">CH<sub>4</sub></span> fluxes. Warming led to an increase in net <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes, reaching average fluxes of 10 422.18 <span class="inline-formula">±</span> 2570.12 <span class="inline-formula">µ</span>mol <span class="inline-formula">CO<sub>2</sub></span> m<span class="inline-formula"><sup>−2</sup></span> d<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula">88.11±15.19</span> <span class="inline-formula">µ</span>mol <span class="inline-formula">CH<sub>4</sub></span> m<span class="inline-formula"><sup>−2</sup></span> d<span class="inline-formula"><sup>−1</sup></span>, while <span class="inline-formula">CO<sub>2</sub></span> and <span class="inline-formula">CH<sub>4</sub></span> fluxes decreased over time in sediments maintained at 25 <span class="inline-formula"><sup>∘</sup></span>C. Prolonged darkness led to an increase in <span class="inline-formula">CO<sub>2</sub></span> fluxes but a decrease in <span class="inline-formula">CH<sub>4</sub></span> fluxes in vegetated sediments. These results add to previous research identifying Red Sea seagrass meadows as a significant source of <span class="inline-formula">CH<sub>4</sub></span>, while also indicating that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows, providing a feedback mechanism that may contribute to further enhancing global warming.</p>https://www.biogeosciences.net/17/1717/2020/bg-17-1717-2020.pdf |