A SAR Target Recognition Method Based on Decision Fusion of Multiple Features and Classifiers

A synthetic aperture radar (SAR) target recognition method combining multiple features and multiple classifiers is proposed. The Zernike moments, kernel principal component analysis (KPCA), and monographic signals are used to describe SAR image features. The three types of features describe SAR targ...

Full description

Bibliographic Details
Main Authors: Zhengwu Lu, Guosong Jiang, Yurong Guan, Qingdong Wang, Jianbo Wu
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Scientific Programming
Online Access:http://dx.doi.org/10.1155/2021/1258219
Description
Summary:A synthetic aperture radar (SAR) target recognition method combining multiple features and multiple classifiers is proposed. The Zernike moments, kernel principal component analysis (KPCA), and monographic signals are used to describe SAR image features. The three types of features describe SAR target geometric shape features, projection features, and image decomposition features. Their combined use can effectively enhance the description of the target. In the classification stage, the support vector machine (SVM), sparse representation-based classification (SRC), and joint sparse representation (JSR) are used as the classifiers for the three types of features, respectively, and the corresponding decision variables are obtained. For the decision variables of the three types of features, multiple sets of weight vectors are used for weighted fusion to determine the target label of the test sample. In the experiment, based on the MSTAR dataset, experiments are performed under standard operating condition (SOC) and extended operating conditions (EOCs). The experimental results verify the effectiveness, robustness, and adaptability of the proposed method.
ISSN:1875-919X