Vortex interactions between forewing and hindwing of dragonfly in hovering flight
Two tandem flapping wings in viscous flow were modeled by using the immersed boundary method for exploration of the aerodynamics of dragonfly in hovering flight. Interaction between the forewing and the hindwing, and its effect on the lift forces, were examined by varying the phase difference of the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2015-01-01
|
Series: | Theoretical and Applied Mechanics Letters |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095034915000136 |
id |
doaj-6be1f0c1d0e04c08a83069ee65cdb790 |
---|---|
record_format |
Article |
spelling |
doaj-6be1f0c1d0e04c08a83069ee65cdb7902020-11-24T22:08:33ZengElsevierTheoretical and Applied Mechanics Letters2095-03492015-01-0151242910.1016/j.taml.2015.01.007Vortex interactions between forewing and hindwing of dragonfly in hovering flightChun-Mei Xie0Wei-Xi Huang1Sino-French Engineer School, Beijing University of Aeronautics and Astronautics, Beijing 100191, ChinaAML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, ChinaTwo tandem flapping wings in viscous flow were modeled by using the immersed boundary method for exploration of the aerodynamics of dragonfly in hovering flight. Interaction between the forewing and the hindwing, and its effect on the lift forces, were examined by varying the phase difference of the wing motions and the inter-distance of the two wings. Two vortex interaction modes were identified at different phase differences and inter-distances, which give rise to significant variations of the lift forces. The first interaction mode increases the lift of the forewing and the second one enhances the lift of the hindwing. The two modes occur at different time during a flapping period and have different influence on the lift of wings as the phase difference varies.http://www.sciencedirect.com/science/article/pii/S2095034915000136Vortex interactionDragonflyHovering flightImmersed boundary method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chun-Mei Xie Wei-Xi Huang |
spellingShingle |
Chun-Mei Xie Wei-Xi Huang Vortex interactions between forewing and hindwing of dragonfly in hovering flight Theoretical and Applied Mechanics Letters Vortex interaction Dragonfly Hovering flight Immersed boundary method |
author_facet |
Chun-Mei Xie Wei-Xi Huang |
author_sort |
Chun-Mei Xie |
title |
Vortex interactions between forewing and hindwing of dragonfly in hovering flight |
title_short |
Vortex interactions between forewing and hindwing of dragonfly in hovering flight |
title_full |
Vortex interactions between forewing and hindwing of dragonfly in hovering flight |
title_fullStr |
Vortex interactions between forewing and hindwing of dragonfly in hovering flight |
title_full_unstemmed |
Vortex interactions between forewing and hindwing of dragonfly in hovering flight |
title_sort |
vortex interactions between forewing and hindwing of dragonfly in hovering flight |
publisher |
Elsevier |
series |
Theoretical and Applied Mechanics Letters |
issn |
2095-0349 |
publishDate |
2015-01-01 |
description |
Two tandem flapping wings in viscous flow were modeled by using the immersed boundary method for exploration of the aerodynamics of dragonfly in hovering flight. Interaction between the forewing and the hindwing, and its effect on the lift forces, were examined by varying the phase difference of the wing motions and the inter-distance of the two wings. Two vortex interaction modes were identified at different phase differences and inter-distances, which give rise to significant variations of the lift forces. The first interaction mode increases the lift of the forewing and the second one enhances the lift of the hindwing. The two modes occur at different time during a flapping period and have different influence on the lift of wings as the phase difference varies. |
topic |
Vortex interaction Dragonfly Hovering flight Immersed boundary method |
url |
http://www.sciencedirect.com/science/article/pii/S2095034915000136 |
work_keys_str_mv |
AT chunmeixie vortexinteractionsbetweenforewingandhindwingofdragonflyinhoveringflight AT weixihuang vortexinteractionsbetweenforewingandhindwingofdragonflyinhoveringflight |
_version_ |
1725815986722963456 |