Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information

The social capital selection of a public–private-partnership (PPP) project could be regarded as a classical multiple attribute group decision-making (MAGDM) issue. In this paper, based on the traditional gained and lost dominance score (GLDS) method, the q-rung orthopair fuzzy entropy-based GLDS met...

Full description

Bibliographic Details
Main Authors: Li Liu, Jiang Wu, Guiwu Wei, Cun Wei, Jie Wang, Yu Wei
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/4/414
Description
Summary:The social capital selection of a public–private-partnership (PPP) project could be regarded as a classical multiple attribute group decision-making (MAGDM) issue. In this paper, based on the traditional gained and lost dominance score (GLDS) method, the q-rung orthopair fuzzy entropy-based GLDS method was used to solve MAGDM problems. First, some basic theories related to the q-rung orthopair fuzzy sets (q-ROFSs) are briefly reviewed. Then, to fuse the q-rung orthopair fuzzy information effectively, the q-rung orthopair fuzzy Hamacher weighting average (q-ROFHWA) operator and q-rung orthopair fuzzy Hamacher weighting geometric (q-ROFHWG) operator based on the Hamacher operation laws are proposed. Moreover, to determine the attribute weights, the q-rung orthopair fuzzy entropy (q-ROFE) is proposed and some significant merits of it are discussed. Next, based on the q-ROFHWA operator, q-ROFE, and the traditional GLDS method, a MAGDM model with q-rung orthopair fuzzy information is built. In the end, a numerical example for social capital selection of PPP projects is provided to testify the proposed method and deliver a comparative analysis.
ISSN:1099-4300