Advances in Analysis of Milk Proteases Activity at Surfaces and in a Volume by Acoustic Methods

This review is focused on the application of surface and volume-sensitive acoustic methods for the detection of milk proteases such as trypsin and plasmin. While trypsin is an important protein of human milk, plasmin is a protease that plays an important role in the quality of bovine, sheep and goat...

Full description

Bibliographic Details
Main Authors: Mark Dizon, Marek Tatarko, Tibor Hianik
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/19/5594
Description
Summary:This review is focused on the application of surface and volume-sensitive acoustic methods for the detection of milk proteases such as trypsin and plasmin. While trypsin is an important protein of human milk, plasmin is a protease that plays an important role in the quality of bovine, sheep and goat milks. The increased activity of plasmin can cause an extensive cleavage of β-casein and, thus, affect the milk gelation and taste. The basic principles of surface-sensitive acoustic methods, as well as high-resolution ultrasonic spectroscopy (HR-US), are presented. The current state-of-the-art examples of the application of acoustic sensors for protease detection in real time are discussed. The application of the HR-US method for studying the kinetics of the enzyme reaction is demonstrated. The sensitivity of the acoustics biosensors and HR-US methods for protease detection are compared.
ISSN:1424-8220