Multiple Cayley-Klein metric learning.

As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric...

Full description

Bibliographic Details
Main Authors: Yanhong Bi, Bin Fan, Fuchao Wu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5608239?pdf=render
Description
Summary:As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.
ISSN:1932-6203