Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations

<p>Air–sea carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) flux is often indirectly estimated by the bulk method using the air–sea difference in <span class="inline-formula">CO<sub>2</sub></span> fugacity (...

Full description

Bibliographic Details
Main Authors: Y. Dong, M. Yang, D. C. E. Bakker, V. Kitidis, T. G. Bell
Format: Article
Language:English
Published: Copernicus Publications 2021-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/8089/2021/acp-21-8089-2021.pdf
id doaj-6baa9b7557a6499280220325ce029dfa
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Dong
Y. Dong
M. Yang
D. C. E. Bakker
V. Kitidis
T. G. Bell
spellingShingle Y. Dong
Y. Dong
M. Yang
D. C. E. Bakker
V. Kitidis
T. G. Bell
Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
Atmospheric Chemistry and Physics
author_facet Y. Dong
Y. Dong
M. Yang
D. C. E. Bakker
V. Kitidis
T. G. Bell
author_sort Y. Dong
title Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
title_short Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
title_full Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
title_fullStr Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
title_full_unstemmed Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
title_sort uncertainties in eddy covariance air–sea co<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisations
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-05-01
description <p>Air–sea carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) flux is often indirectly estimated by the bulk method using the air–sea difference in <span class="inline-formula">CO<sub>2</sub></span> fugacity (<span class="inline-formula">Δ<i>f</i></span><span class="inline-formula">CO<sub>2</sub></span>) and a parameterisation of the gas transfer velocity (<span class="inline-formula"><i>K</i></span>). Direct flux measurements by eddy covariance (EC) provide an independent reference for bulk flux estimates and are often used to study processes that drive <span class="inline-formula"><i>K</i></span>. However, inherent uncertainties in EC air–sea <span class="inline-formula">CO<sub>2</sub></span> flux measurements from ships have not been well quantified and may confound analyses of <span class="inline-formula"><i>K</i></span>. This paper evaluates the uncertainties in EC <span class="inline-formula">CO<sub>2</sub></span> fluxes from four cruises. Fluxes were measured with two state-of-the-art closed-path <span class="inline-formula">CO<sub>2</sub></span> analysers on two ships. The mean bias in the EC <span class="inline-formula">CO<sub>2</sub></span> flux is low, but the random error is relatively large over short timescales. The uncertainty (1 standard deviation) in hourly averaged EC air–sea <span class="inline-formula">CO<sub>2</sub></span> fluxes (cruise mean) ranges from 1.4 to 3.2 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">mmol</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="67pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="a4c66177a451915c5530d12ef0d4aec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-8089-2021-ie00001.svg" width="67pt" height="13pt" src="acp-21-8089-2021-ie00001.png"/></svg:svg></span></span>. This corresponds to a relative uncertainty of <span class="inline-formula">∼</span> 20 % during two Arctic cruises that observed large <span class="inline-formula">CO<sub>2</sub></span> flux magnitude. The relative uncertainty was greater (<span class="inline-formula">∼</span> 50 %) when the <span class="inline-formula">CO<sub>2</sub></span> flux magnitude was small during two Atlantic cruises. Random uncertainty in the EC <span class="inline-formula">CO<sub>2</sub></span> flux is mostly caused by sampling error. Instrument noise is relatively unimportant. Random uncertainty in EC <span class="inline-formula">CO<sub>2</sub></span> fluxes can be reduced by averaging for longer. However, averaging for too long will result in the inclusion of more natural variability. Auto-covariance analysis of <span class="inline-formula">CO<sub>2</sub></span> fluxes suggests that the optimal timescale for averaging EC <span class="inline-formula">CO<sub>2</sub></span> flux measurements ranges from 1 to 3 h, which increases the mean signal-to-noise ratio of the four cruises to higher than 3. Applying an appropriate averaging timescale and suitable <span class="inline-formula">Δ<i>f</i></span><span class="inline-formula">CO<sub>2</sub></span> threshold (20 <span class="inline-formula">µatm</span>) to EC flux data enables an optimal analysis of <span class="inline-formula"><i>K</i></span>.</p>
url https://acp.copernicus.org/articles/21/8089/2021/acp-21-8089-2021.pdf
work_keys_str_mv AT ydong uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
AT ydong uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
AT myang uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
AT dcebakker uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
AT vkitidis uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
AT tgbell uncertaintiesineddycovarianceairseacosub2subfluxmeasurementsandimplicationsforgastransfervelocityparameterisations
_version_ 1721426310455099392
spelling doaj-6baa9b7557a6499280220325ce029dfa2021-05-26T12:36:10ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-05-01218089811010.5194/acp-21-8089-2021Uncertainties in eddy covariance air–sea CO<sub>2</sub> flux measurements and implications for gas transfer velocity parameterisationsY. Dong0Y. Dong1M. Yang2D. C. E. Bakker3V. Kitidis4T. G. Bell5Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, UKCentre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, UK<p>Air–sea carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) flux is often indirectly estimated by the bulk method using the air–sea difference in <span class="inline-formula">CO<sub>2</sub></span> fugacity (<span class="inline-formula">Δ<i>f</i></span><span class="inline-formula">CO<sub>2</sub></span>) and a parameterisation of the gas transfer velocity (<span class="inline-formula"><i>K</i></span>). Direct flux measurements by eddy covariance (EC) provide an independent reference for bulk flux estimates and are often used to study processes that drive <span class="inline-formula"><i>K</i></span>. However, inherent uncertainties in EC air–sea <span class="inline-formula">CO<sub>2</sub></span> flux measurements from ships have not been well quantified and may confound analyses of <span class="inline-formula"><i>K</i></span>. This paper evaluates the uncertainties in EC <span class="inline-formula">CO<sub>2</sub></span> fluxes from four cruises. Fluxes were measured with two state-of-the-art closed-path <span class="inline-formula">CO<sub>2</sub></span> analysers on two ships. The mean bias in the EC <span class="inline-formula">CO<sub>2</sub></span> flux is low, but the random error is relatively large over short timescales. The uncertainty (1 standard deviation) in hourly averaged EC air–sea <span class="inline-formula">CO<sub>2</sub></span> fluxes (cruise mean) ranges from 1.4 to 3.2 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">mmol</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="67pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="a4c66177a451915c5530d12ef0d4aec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-8089-2021-ie00001.svg" width="67pt" height="13pt" src="acp-21-8089-2021-ie00001.png"/></svg:svg></span></span>. This corresponds to a relative uncertainty of <span class="inline-formula">∼</span> 20 % during two Arctic cruises that observed large <span class="inline-formula">CO<sub>2</sub></span> flux magnitude. The relative uncertainty was greater (<span class="inline-formula">∼</span> 50 %) when the <span class="inline-formula">CO<sub>2</sub></span> flux magnitude was small during two Atlantic cruises. Random uncertainty in the EC <span class="inline-formula">CO<sub>2</sub></span> flux is mostly caused by sampling error. Instrument noise is relatively unimportant. Random uncertainty in EC <span class="inline-formula">CO<sub>2</sub></span> fluxes can be reduced by averaging for longer. However, averaging for too long will result in the inclusion of more natural variability. Auto-covariance analysis of <span class="inline-formula">CO<sub>2</sub></span> fluxes suggests that the optimal timescale for averaging EC <span class="inline-formula">CO<sub>2</sub></span> flux measurements ranges from 1 to 3 h, which increases the mean signal-to-noise ratio of the four cruises to higher than 3. Applying an appropriate averaging timescale and suitable <span class="inline-formula">Δ<i>f</i></span><span class="inline-formula">CO<sub>2</sub></span> threshold (20 <span class="inline-formula">µatm</span>) to EC flux data enables an optimal analysis of <span class="inline-formula"><i>K</i></span>.</p>https://acp.copernicus.org/articles/21/8089/2021/acp-21-8089-2021.pdf