Nimotuzumab enhances radiation sensitivity of NSCLC H292 cells in vitro by blocking epidermal growth factor receptor nuclear translocation and inhibiting radiation-induced DNA damage repair

Kai Teng,1,2,* Yong Zhang,1,* Xiaoyan Hu,1 Yihui Ding,1 Rui Gong,1 Li Liu1,* 1Department of Thoracic Oncology, Cancer Center of Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Radiation...

Full description

Bibliographic Details
Main Authors: Teng K, Zhang Y, Hu X, Ding Y, Gong R, Liu L
Format: Article
Language:English
Published: Dove Medical Press 2015-04-01
Series:OncoTargets and Therapy
Online Access:http://www.dovepress.com/nimotuzumab-enhances-radiation-sensitivity-of-nsclc-h292-cells-in-vitr-peer-reviewed-article-OTT
Description
Summary:Kai Teng,1,2,* Yong Zhang,1,* Xiaoyan Hu,1 Yihui Ding,1 Rui Gong,1 Li Liu1,* 1Department of Thoracic Oncology, Cancer Center of Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Radiation Oncology, Hainan Cancer Hospital, Haikou, Hainan, People’s Republic of China *These authors contributed equally to this work Background: The epidermal growth factor receptor (EGFR) signaling pathway plays a significant role in radiation resistance. There is evidence that EGFR nuclear translocation is associated with DNA double-strand breaks (DSB) repair. Nimotuzumab has shown the effect of radiosensitization in various cancer cells, but little is known about the relationship between nimotuzumab and EGFR nuclear translocation in non-small cell lung cancer (NSCLC) cell lines. In this study, we selected two NSCLC cell lines, namely, H292 (with high EGFR expression) and H1975 (with low EGFR expression) and explored the mechanisms underlying radiation sensitivity.Methods: MTT assay, clonogenic survival assay, and flow cytometry were performed separately to test cell viability, radiation sensitivity, cell cycle distribution, and apoptosis. Protein γ-H2AX, DNA-PK/p-DNA-PK, and EGFR/p-EGFR expression were further compared both in the cytoplasm and the nucleus with the western blot.Results: Nimotuzumab reduced the viability of H292 cells and sensitized H292 cells to ionizing radiation. The radiation sensitivity enhancement ratio (SER) was 1.304 and 1.092 for H292 and H1975 cells, respectively. H292 cells after nimotuzumab administration were arrested at the G0/G1 phase in response to radiation. Apoptosis was without statistical significance in both cell lines. γ-H2AX formation in the combination group (nimotuzumab and radiation) increased both in the cytoplasm and the nucleus along with the decreased expression of nuclear EGFR/p-EGFR and p-DNA-PK in H292 cells (P<0.05) that was more significant than that in H1975 cells.Conclusion: Our research revealed a possible mechanism to explain the radiosensitivity in H292 cells. Nimotuzumab decreased the radiation-induced activation of DNA-PK by blocking EGFR nuclear translocation and impairing DNA DSB repair, thus enhancing radiosensitivity in H292 cells. Because these results represent early research, the matters of how γ-H2AX and DNA-PK dynamically change simultaneously with nuclear EGFR and the best time to administer nimotuzumab will require further exploration. Keywords: nimotuzumab, NSCLC, EGFR, radiosensitivity, nuclear translocation, DNA-PK
ISSN:1178-6930