Entropy and Semi-Entropies of LR Fuzzy Numbers’ Linear Function with Applications to Fuzzy Programming

As a crucial concept of characterizing uncertainty, entropy has been widely used in fuzzy programming problems, while involving complicated calculations. To simplify the operations so as to broaden its applicable areas, this paper investigates the entropy within the framework of credibility theory a...

Full description

Bibliographic Details
Main Authors: Jian Zhou, Chuan Huang, Mingxuan Zhao, Hui Li
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/7/697
Description
Summary:As a crucial concept of characterizing uncertainty, entropy has been widely used in fuzzy programming problems, while involving complicated calculations. To simplify the operations so as to broaden its applicable areas, this paper investigates the entropy within the framework of credibility theory and derives the formulas for calculating the entropy of regular LR fuzzy numbers by virtue of the inverse credibility distribution. By verifying the favorable property of this operator, a calculation formula of a linear function’s entropy is also proposed. Furthermore, considering the strength of semi-entropy in measuring one-side uncertainty, the lower and upper semi-entropies, as well as the corresponding formulas are suggested to handle return-oriented and cost-oriented problems, respectively. Finally, utilizing entropy and semi-entropies as risk measures, two types of entropy optimization models and their equivalent formulations derived from the proposed formulas are given according to different decision criteria, providing an effective modeling method for fuzzy programming from the perspective of entropy. The numerical examples demonstrate the high efficiency and good performance of the proposed methods in decision making.
ISSN:1099-4300