Summary: | The glycoprotein (G) of rabies virus (RV) is required for binding to neuronal receptors and for viral entry. G-deleted RV vector is a powerful tool for investigating the organization and function of the neural circuits. It gives the investigator the ability to genetically target initial infection to particular neurons and to control trans-synaptic propagation. In this study we have quantitatively evaluated the effect of G gene deletion on the cytotoxicity and transgene expression level of the RV vector. We compared the characteristics of the propagation-competent RV vector (rHEP5.0-CVSG-mRFP) and the G-deleted RV vector (rHEP5.0-ΔG-mRFP), both of which are based on the attenuated HEP-Flury strain and express monomeric red fluorescent protein (mRFP) as a transgene. rHEP5.0-ΔG-mRFP showed lower cytotoxicity than rHEP5.0-CVSG-mRFP, and within 16 days of infection we found no change in the basic electrophysiological properties of neurons infected with the rHEP5.0-ΔG-mRFP. The mRFP expression level of rHEP5.0-ΔG-mRFP was much higher than that of rHEP5.0-CVSG-mRFP, and 3 days after infection the retrogradely infected neurons were clearly visualized by the expressed fluorescent protein without any staining. This may be due to the low cytotoxicity and/or the presumed change in the polymerase gene (L) expression level of the G-deleted RV vector. Although the mechanisms remains to be clarified, the results of this study indicate that deletion of the G gene greatly improves the usability of the RV vector for studying the organization and function of the neural circuits by decreasing the cytotoxicity and increasing the transgene expression level.
|