Sequence-Dependent Elongation Dynamics on Macrolide-Bound Ribosomes

The traditional view of macrolide antibiotics as plugs inside the ribosomal nascent peptide exit tunnel (NPET) has lately been challenged in favor of a more complex, heterogeneous mechanism, where drug-peptide interactions determine the fate of a translating ribosome. To investigate these highly dyn...

Full description

Bibliographic Details
Main Authors: Magnus Johansson, Jin Chen, Albert Tsai, Guy Kornberg, Joseph D. Puglisi
Format: Article
Language:English
Published: Elsevier 2014-06-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124714003362
Description
Summary:The traditional view of macrolide antibiotics as plugs inside the ribosomal nascent peptide exit tunnel (NPET) has lately been challenged in favor of a more complex, heterogeneous mechanism, where drug-peptide interactions determine the fate of a translating ribosome. To investigate these highly dynamic processes, we applied single-molecule tracking of elongating ribosomes during inhibition of elongation by erythromycin of several nascent chains, including ErmCL and H-NS, which were shown to be, respectively, sensitive and resistant to erythromycin. Peptide sequence-specific changes were observed in translation elongation dynamics in the presence of a macrolide-obstructed NPET. Elongation rates were not severely inhibited in general by the presence of the drug; instead, stalls or pauses were observed as abrupt events. The dynamic pathways of nascent-chain-dependent elongation pausing in the presence of macrolides determine the fate of the translating ribosome stalling or readthrough.
ISSN:2211-1247