GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS
<p>Virtual city models are important for many applications such as urban planning, virtual and augmented reality, disaster management, and gaming. Urban features such as buildings, roads, and trees are essential components of these models and are subject to frequent change and alteration. It i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-09-01
|
Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/3/2019/isprs-annals-IV-4-W8-3-2019.pdf |
id |
doaj-6b4d9493a95a40bcaa99812b933fa2a2 |
---|---|
record_format |
Article |
spelling |
doaj-6b4d9493a95a40bcaa99812b933fa2a22020-11-25T02:42:48ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502019-09-01IV-4-W831010.5194/isprs-annals-IV-4-W8-3-2019GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKSA. Agoub0V. Schmidt1M. Kada2Institute of Geodesy and Geoinformation Science (IGG), Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, GermanyInstitute of Geodesy and Geoinformation Science (IGG), Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, GermanyInstitute of Geodesy and Geoinformation Science (IGG), Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany<p>Virtual city models are important for many applications such as urban planning, virtual and augmented reality, disaster management, and gaming. Urban features such as buildings, roads, and trees are essential components of these models and are subject to frequent change and alteration. It is laborious to manually build and update virtual city models, due to a large number of instances and temporal changes on such features. The increase of publicly available spatial data provides an important source for pipelines that automate virtual city model generation. The large quantity of data also opens an opportunity to use Deep Learning (DL) as a technique that minimizes the need for expert domain knowledge. In addition, many Deep Learning models calculations can be parallelized on modern hardware such as graphical processing units, which reduces the computation time substantially.</p><p>We explore the opportunity of using publicly available data in computing multiple thematic data layers from Digital Surface Models (DSMs) using an automatic pipeline that is powered by a semantic segmentation network. To evaluate this design, we implement our pipeline using multiple Convolutional Neural Networks (CNN) with an encoder-decoder architecture. We produce a variety of two and three-dimensional thematic data. We focus our evaluation on the pipeline’s ability to produce accurate building footprints. In our experiments we vary the depths, the number of input channels and data resolutions of the evaluated networks. Our experiments process public data that is provided by New York City.</p>https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/3/2019/isprs-annals-IV-4-W8-3-2019.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Agoub V. Schmidt M. Kada |
spellingShingle |
A. Agoub V. Schmidt M. Kada GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
A. Agoub V. Schmidt M. Kada |
author_sort |
A. Agoub |
title |
GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS |
title_short |
GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS |
title_full |
GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS |
title_fullStr |
GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS |
title_full_unstemmed |
GENERATING 3D CITY MODELS BASED ON THE SEMANTIC SEGMENTATION OF LIDAR DATA USING CONVOLUTIONAL NEURAL NETWORKS |
title_sort |
generating 3d city models based on the semantic segmentation of lidar data using convolutional neural networks |
publisher |
Copernicus Publications |
series |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
2194-9042 2194-9050 |
publishDate |
2019-09-01 |
description |
<p>Virtual city models are important for many applications such as urban planning, virtual and augmented reality, disaster management, and gaming. Urban features such as buildings, roads, and trees are essential components of these models and are subject to frequent change and alteration. It is laborious to manually build and update virtual city models, due to a large number of instances and temporal changes on such features. The increase of publicly available spatial data provides an important source for pipelines that automate virtual city model generation. The large quantity of data also opens an opportunity to use Deep Learning (DL) as a technique that minimizes the need for expert domain knowledge. In addition, many Deep Learning models calculations can be parallelized on modern hardware such as graphical processing units, which reduces the computation time substantially.</p><p>We explore the opportunity of using publicly available data in computing multiple thematic data layers from Digital Surface Models (DSMs) using an automatic pipeline that is powered by a semantic segmentation network. To evaluate this design, we implement our pipeline using multiple Convolutional Neural Networks (CNN) with an encoder-decoder architecture. We produce a variety of two and three-dimensional thematic data. We focus our evaluation on the pipeline’s ability to produce accurate building footprints. In our experiments we vary the depths, the number of input channels and data resolutions of the evaluated networks. Our experiments process public data that is provided by New York City.</p> |
url |
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/3/2019/isprs-annals-IV-4-W8-3-2019.pdf |
work_keys_str_mv |
AT aagoub generating3dcitymodelsbasedonthesemanticsegmentationoflidardatausingconvolutionalneuralnetworks AT vschmidt generating3dcitymodelsbasedonthesemanticsegmentationoflidardatausingconvolutionalneuralnetworks AT mkada generating3dcitymodelsbasedonthesemanticsegmentationoflidardatausingconvolutionalneuralnetworks |
_version_ |
1724771416257069056 |