Nonlocal Intracranial Cavity Extraction

Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for no...

Full description

Bibliographic Details
Main Authors: José V. Manjón, Simon F. Eskildsen, Pierrick Coupé, José E. Romero, D. Louis Collins, Montserrat Robles
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2014/820205
id doaj-6b488290d43c4008be25df062475e294
record_format Article
spelling doaj-6b488290d43c4008be25df062475e2942020-11-24T22:45:48ZengHindawi LimitedInternational Journal of Biomedical Imaging1687-41881687-41962014-01-01201410.1155/2014/820205820205Nonlocal Intracranial Cavity ExtractionJosé V. Manjón0Simon F. Eskildsen1Pierrick Coupé2José E. Romero3D. Louis Collins4Montserrat Robles5Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainCenter of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus, DenmarkLaboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, 351 Cours de la Libération, 33405 Talence cedex, FranceInstituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainMcConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, CanadaInstituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainAutomatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.http://dx.doi.org/10.1155/2014/820205
collection DOAJ
language English
format Article
sources DOAJ
author José V. Manjón
Simon F. Eskildsen
Pierrick Coupé
José E. Romero
D. Louis Collins
Montserrat Robles
spellingShingle José V. Manjón
Simon F. Eskildsen
Pierrick Coupé
José E. Romero
D. Louis Collins
Montserrat Robles
Nonlocal Intracranial Cavity Extraction
International Journal of Biomedical Imaging
author_facet José V. Manjón
Simon F. Eskildsen
Pierrick Coupé
José E. Romero
D. Louis Collins
Montserrat Robles
author_sort José V. Manjón
title Nonlocal Intracranial Cavity Extraction
title_short Nonlocal Intracranial Cavity Extraction
title_full Nonlocal Intracranial Cavity Extraction
title_fullStr Nonlocal Intracranial Cavity Extraction
title_full_unstemmed Nonlocal Intracranial Cavity Extraction
title_sort nonlocal intracranial cavity extraction
publisher Hindawi Limited
series International Journal of Biomedical Imaging
issn 1687-4188
1687-4196
publishDate 2014-01-01
description Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.
url http://dx.doi.org/10.1155/2014/820205
work_keys_str_mv AT josevmanjon nonlocalintracranialcavityextraction
AT simonfeskildsen nonlocalintracranialcavityextraction
AT pierrickcoupe nonlocalintracranialcavityextraction
AT joseeromero nonlocalintracranialcavityextraction
AT dlouiscollins nonlocalintracranialcavityextraction
AT montserratrobles nonlocalintracranialcavityextraction
_version_ 1725687521194541056