“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
This paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-11-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/9/11/849 |
id |
doaj-6b4874a125c94489a7995e2b862707dc |
---|---|
record_format |
Article |
spelling |
doaj-6b4874a125c94489a7995e2b862707dc2020-11-24T20:42:45ZengMDPI AGWater2073-44412017-11-0191184910.3390/w9110849w9110849“In-Process Type” Dynamic Muskingum Model Parameter Estimation MethodGang Zhang0Tuo Xie1Lei Zhang2Xia Hua3Chen Wu4Xi Chen5Fangfeng Li6Bin Zhao7Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaState Grid Gansu Electric Power Company, Gansu Electric Power Research Institute, Lanzhou 730050, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaThis paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “in-process type” dynamic parameter estimation (IP-DPE) method is used to establish the characteristic attributes set of 50 floods. The characteristic attributes set refers to a set of parameters that could describe the shape, magnitude, and duration of the flood before flood peak; they are the input, whereas parameters K and x of each flood are the output to establish a Neural Network model. Then we input flood characteristic attributes to obtain flood parameters when estimating flood parameters practically. Ten floods were used to test the parameter estimation and flood routing efficacy. The results show that the IP-DPE method can quickly identify parameters and facilitate accurate river flood forecasting.https://www.mdpi.com/2073-4441/9/11/849Muskingum modelriver flood routingin-process typedynamic parameter estimationBP-Neural Network |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gang Zhang Tuo Xie Lei Zhang Xia Hua Chen Wu Xi Chen Fangfeng Li Bin Zhao |
spellingShingle |
Gang Zhang Tuo Xie Lei Zhang Xia Hua Chen Wu Xi Chen Fangfeng Li Bin Zhao “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method Water Muskingum model river flood routing in-process type dynamic parameter estimation BP-Neural Network |
author_facet |
Gang Zhang Tuo Xie Lei Zhang Xia Hua Chen Wu Xi Chen Fangfeng Li Bin Zhao |
author_sort |
Gang Zhang |
title |
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method |
title_short |
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method |
title_full |
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method |
title_fullStr |
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method |
title_full_unstemmed |
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method |
title_sort |
“in-process type” dynamic muskingum model parameter estimation method |
publisher |
MDPI AG |
series |
Water |
issn |
2073-4441 |
publishDate |
2017-11-01 |
description |
This paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “in-process type” dynamic parameter estimation (IP-DPE) method is used to establish the characteristic attributes set of 50 floods. The characteristic attributes set refers to a set of parameters that could describe the shape, magnitude, and duration of the flood before flood peak; they are the input, whereas parameters K and x of each flood are the output to establish a Neural Network model. Then we input flood characteristic attributes to obtain flood parameters when estimating flood parameters practically. Ten floods were used to test the parameter estimation and flood routing efficacy. The results show that the IP-DPE method can quickly identify parameters and facilitate accurate river flood forecasting. |
topic |
Muskingum model river flood routing in-process type dynamic parameter estimation BP-Neural Network |
url |
https://www.mdpi.com/2073-4441/9/11/849 |
work_keys_str_mv |
AT gangzhang inprocesstypedynamicmuskingummodelparameterestimationmethod AT tuoxie inprocesstypedynamicmuskingummodelparameterestimationmethod AT leizhang inprocesstypedynamicmuskingummodelparameterestimationmethod AT xiahua inprocesstypedynamicmuskingummodelparameterestimationmethod AT chenwu inprocesstypedynamicmuskingummodelparameterestimationmethod AT xichen inprocesstypedynamicmuskingummodelparameterestimationmethod AT fangfengli inprocesstypedynamicmuskingummodelparameterestimationmethod AT binzhao inprocesstypedynamicmuskingummodelparameterestimationmethod |
_version_ |
1716821878703652864 |