“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method

This paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “...

Full description

Bibliographic Details
Main Authors: Gang Zhang, Tuo Xie, Lei Zhang, Xia Hua, Chen Wu, Xi Chen, Fangfeng Li, Bin Zhao
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/9/11/849
id doaj-6b4874a125c94489a7995e2b862707dc
record_format Article
spelling doaj-6b4874a125c94489a7995e2b862707dc2020-11-24T20:42:45ZengMDPI AGWater2073-44412017-11-0191184910.3390/w9110849w9110849“In-Process Type” Dynamic Muskingum Model Parameter Estimation MethodGang Zhang0Tuo Xie1Lei Zhang2Xia Hua3Chen Wu4Xi Chen5Fangfeng Li6Bin Zhao7Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaState Grid Gansu Electric Power Company, Gansu Electric Power Research Institute, Lanzhou 730050, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaInstitute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, ChinaThis paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “in-process type” dynamic parameter estimation (IP-DPE) method is used to establish the characteristic attributes set of 50 floods. The characteristic attributes set refers to a set of parameters that could describe the shape, magnitude, and duration of the flood before flood peak; they are the input, whereas parameters K and x of each flood are the output to establish a Neural Network model. Then we input flood characteristic attributes to obtain flood parameters when estimating flood parameters practically. Ten floods were used to test the parameter estimation and flood routing efficacy. The results show that the IP-DPE method can quickly identify parameters and facilitate accurate river flood forecasting.https://www.mdpi.com/2073-4441/9/11/849Muskingum modelriver flood routingin-process typedynamic parameter estimationBP-Neural Network
collection DOAJ
language English
format Article
sources DOAJ
author Gang Zhang
Tuo Xie
Lei Zhang
Xia Hua
Chen Wu
Xi Chen
Fangfeng Li
Bin Zhao
spellingShingle Gang Zhang
Tuo Xie
Lei Zhang
Xia Hua
Chen Wu
Xi Chen
Fangfeng Li
Bin Zhao
“In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
Water
Muskingum model
river flood routing
in-process type
dynamic parameter estimation
BP-Neural Network
author_facet Gang Zhang
Tuo Xie
Lei Zhang
Xia Hua
Chen Wu
Xi Chen
Fangfeng Li
Bin Zhao
author_sort Gang Zhang
title “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
title_short “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
title_full “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
title_fullStr “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
title_full_unstemmed “In-Process Type” Dynamic Muskingum Model Parameter Estimation Method
title_sort “in-process type” dynamic muskingum model parameter estimation method
publisher MDPI AG
series Water
issn 2073-4441
publishDate 2017-11-01
description This paper discusses the Muskingum model as a novel parameter estimation method. Sixty representative floods over the past four decades serve as research objects; a linear Muskingum model and Pigeon-inspired optimization (PIO) algorithm are used to obtain the parameters of each flood. The proposed “in-process type” dynamic parameter estimation (IP-DPE) method is used to establish the characteristic attributes set of 50 floods. The characteristic attributes set refers to a set of parameters that could describe the shape, magnitude, and duration of the flood before flood peak; they are the input, whereas parameters K and x of each flood are the output to establish a Neural Network model. Then we input flood characteristic attributes to obtain flood parameters when estimating flood parameters practically. Ten floods were used to test the parameter estimation and flood routing efficacy. The results show that the IP-DPE method can quickly identify parameters and facilitate accurate river flood forecasting.
topic Muskingum model
river flood routing
in-process type
dynamic parameter estimation
BP-Neural Network
url https://www.mdpi.com/2073-4441/9/11/849
work_keys_str_mv AT gangzhang inprocesstypedynamicmuskingummodelparameterestimationmethod
AT tuoxie inprocesstypedynamicmuskingummodelparameterestimationmethod
AT leizhang inprocesstypedynamicmuskingummodelparameterestimationmethod
AT xiahua inprocesstypedynamicmuskingummodelparameterestimationmethod
AT chenwu inprocesstypedynamicmuskingummodelparameterestimationmethod
AT xichen inprocesstypedynamicmuskingummodelparameterestimationmethod
AT fangfengli inprocesstypedynamicmuskingummodelparameterestimationmethod
AT binzhao inprocesstypedynamicmuskingummodelparameterestimationmethod
_version_ 1716821878703652864