Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
COVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has rece...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Universitas PGRI Semarang
2021-06-01
|
Series: | Jurnal informatika UPGRIS |
Subjects: | |
Online Access: | http://journal.upgris.ac.id/index.php/JIU/article/view/7099 |
id |
doaj-6b449b87c1044f8d806928afab660f40 |
---|---|
record_format |
Article |
spelling |
doaj-6b449b87c1044f8d806928afab660f402021-07-18T13:52:46ZindUniversitas PGRI SemarangJurnal informatika UPGRIS2460-48012477-66452021-06-017110.26877/jiu.v7i1.70993684Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBBMuhammad Rivza Adrian0Muhammad Papuandivitama Putra1Muhammad Hilman Rafialdy2Nur Aini Rakhmawati3Institut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaCOVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has received many comments from social media users, especially from Twitter. This research was conducted with the aim of analyzing the sentiment of implementing the LSSR with media tweets on the Twitter social media platform. The data that were successfully extracted were 466 tweet data with training data and test data having a ratio of 7 to 3. Then the data was calculated into 2 different algorithms to be compared, the first algorithm used was the Support Vector Machine (SVM) algorithm and Random Forest with the aim get the most accurate sentiment analysis results.http://journal.upgris.ac.id/index.php/JIU/article/view/7099sentiment analysiscovid-19psbbsupport vector machinerandom forest |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Muhammad Rivza Adrian Muhammad Papuandivitama Putra Muhammad Hilman Rafialdy Nur Aini Rakhmawati |
spellingShingle |
Muhammad Rivza Adrian Muhammad Papuandivitama Putra Muhammad Hilman Rafialdy Nur Aini Rakhmawati Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB Jurnal informatika UPGRIS sentiment analysis covid-19 psbb support vector machine random forest |
author_facet |
Muhammad Rivza Adrian Muhammad Papuandivitama Putra Muhammad Hilman Rafialdy Nur Aini Rakhmawati |
author_sort |
Muhammad Rivza Adrian |
title |
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB |
title_short |
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB |
title_full |
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB |
title_fullStr |
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB |
title_full_unstemmed |
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB |
title_sort |
perbandingan metode klasifikasi random forest dan svm pada analisis sentimen psbb |
publisher |
Universitas PGRI Semarang |
series |
Jurnal informatika UPGRIS |
issn |
2460-4801 2477-6645 |
publishDate |
2021-06-01 |
description |
COVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has received many comments from social media users, especially from Twitter. This research was conducted with the aim of analyzing the sentiment of implementing the LSSR with media tweets on the Twitter social media platform. The data that were successfully extracted were 466 tweet data with training data and test data having a ratio of 7 to 3. Then the data was calculated into 2 different algorithms to be compared, the first algorithm used was the Support Vector Machine (SVM) algorithm and Random Forest with the aim get the most accurate sentiment analysis results. |
topic |
sentiment analysis covid-19 psbb support vector machine random forest |
url |
http://journal.upgris.ac.id/index.php/JIU/article/view/7099 |
work_keys_str_mv |
AT muhammadrivzaadrian perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb AT muhammadpapuandivitamaputra perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb AT muhammadhilmanrafialdy perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb AT nurainirakhmawati perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb |
_version_ |
1721295675635793920 |