Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB

COVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has rece...

Full description

Bibliographic Details
Main Authors: Muhammad Rivza Adrian, Muhammad Papuandivitama Putra, Muhammad Hilman Rafialdy, Nur Aini Rakhmawati
Format: Article
Language:Indonesian
Published: Universitas PGRI Semarang 2021-06-01
Series:Jurnal informatika UPGRIS
Subjects:
Online Access:http://journal.upgris.ac.id/index.php/JIU/article/view/7099
id doaj-6b449b87c1044f8d806928afab660f40
record_format Article
spelling doaj-6b449b87c1044f8d806928afab660f402021-07-18T13:52:46ZindUniversitas PGRI SemarangJurnal informatika UPGRIS2460-48012477-66452021-06-017110.26877/jiu.v7i1.70993684Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBBMuhammad Rivza Adrian0Muhammad Papuandivitama Putra1Muhammad Hilman Rafialdy2Nur Aini Rakhmawati3Institut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaInstitut Teknologi Sepuluh Nopember SurabayaCOVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has received many comments from social media users, especially from Twitter. This research was conducted with the aim of analyzing the sentiment of implementing the LSSR with media tweets on the Twitter social media platform. The data that were successfully extracted were 466 tweet data with training data and test data having a ratio of 7 to 3. Then the data was calculated into 2 different algorithms to be compared, the first algorithm used was the Support Vector Machine (SVM) algorithm and Random Forest with the aim get the most accurate sentiment analysis results.http://journal.upgris.ac.id/index.php/JIU/article/view/7099sentiment analysiscovid-19psbbsupport vector machinerandom forest
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Muhammad Rivza Adrian
Muhammad Papuandivitama Putra
Muhammad Hilman Rafialdy
Nur Aini Rakhmawati
spellingShingle Muhammad Rivza Adrian
Muhammad Papuandivitama Putra
Muhammad Hilman Rafialdy
Nur Aini Rakhmawati
Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
Jurnal informatika UPGRIS
sentiment analysis
covid-19
psbb
support vector machine
random forest
author_facet Muhammad Rivza Adrian
Muhammad Papuandivitama Putra
Muhammad Hilman Rafialdy
Nur Aini Rakhmawati
author_sort Muhammad Rivza Adrian
title Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
title_short Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
title_full Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
title_fullStr Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
title_full_unstemmed Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB
title_sort perbandingan metode klasifikasi random forest dan svm pada analisis sentimen psbb
publisher Universitas PGRI Semarang
series Jurnal informatika UPGRIS
issn 2460-4801
2477-6645
publishDate 2021-06-01
description COVID-19 in Indonesia, has made the local government not remain silent. Several local governments in Indonesia have enacted regulations to reduce the growth of COVID-19 victims by limiting public meetings with Large-Scale Social Restrictions or LSSR. However, the implementation of this LSSR has received many comments from social media users, especially from Twitter. This research was conducted with the aim of analyzing the sentiment of implementing the LSSR with media tweets on the Twitter social media platform. The data that were successfully extracted were 466 tweet data with training data and test data having a ratio of 7 to 3. Then the data was calculated into 2 different algorithms to be compared, the first algorithm used was the Support Vector Machine (SVM) algorithm and Random Forest with the aim get the most accurate sentiment analysis results.
topic sentiment analysis
covid-19
psbb
support vector machine
random forest
url http://journal.upgris.ac.id/index.php/JIU/article/view/7099
work_keys_str_mv AT muhammadrivzaadrian perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb
AT muhammadpapuandivitamaputra perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb
AT muhammadhilmanrafialdy perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb
AT nurainirakhmawati perbandinganmetodeklasifikasirandomforestdansvmpadaanalisissentimenpsbb
_version_ 1721295675635793920