Analysis of the progressive sampling-based approach using real life datasets

Bibliographic Details
Main Authors: Umarani Venkatapathy, Punithavalli Muthusamy
Format: Article
Language:English
Published: De Gruyter 2011-06-01
Series:Open Computer Science
Subjects:
Online Access:https://doi.org/10.2478/s13537-011-0016-y
id doaj-6b2948fd0b054b79b759c6c114b5abc6
record_format Article
spelling doaj-6b2948fd0b054b79b759c6c114b5abc62021-09-06T19:23:06ZengDe GruyterOpen Computer Science2299-10932011-06-011222124210.2478/s13537-011-0016-ys13537-011-0016-yAnalysis of the progressive sampling-based approach using real life datasetsUmarani Venkatapathy0Punithavalli Muthusamy1Anna University, Coimbatore, IndiaDepartment of Computer Applications, SNS College of Engineering, Coimbatore, Indiahttps://doi.org/10.2478/s13537-011-0016-ydata miningfrequent itemsetassociation rule mining (arm)apriorisamplingprogressive samplingsample sizetemporal characteristicsnegative bordermidpoint itemset
collection DOAJ
language English
format Article
sources DOAJ
author Umarani Venkatapathy
Punithavalli Muthusamy
spellingShingle Umarani Venkatapathy
Punithavalli Muthusamy
Analysis of the progressive sampling-based approach using real life datasets
Open Computer Science
data mining
frequent itemset
association rule mining (arm)
apriori
sampling
progressive sampling
sample size
temporal characteristics
negative border
midpoint itemset
author_facet Umarani Venkatapathy
Punithavalli Muthusamy
author_sort Umarani Venkatapathy
title Analysis of the progressive sampling-based approach using real life datasets
title_short Analysis of the progressive sampling-based approach using real life datasets
title_full Analysis of the progressive sampling-based approach using real life datasets
title_fullStr Analysis of the progressive sampling-based approach using real life datasets
title_full_unstemmed Analysis of the progressive sampling-based approach using real life datasets
title_sort analysis of the progressive sampling-based approach using real life datasets
publisher De Gruyter
series Open Computer Science
issn 2299-1093
publishDate 2011-06-01
topic data mining
frequent itemset
association rule mining (arm)
apriori
sampling
progressive sampling
sample size
temporal characteristics
negative border
midpoint itemset
url https://doi.org/10.2478/s13537-011-0016-y
work_keys_str_mv AT umaranivenkatapathy analysisoftheprogressivesamplingbasedapproachusingreallifedatasets
AT punithavallimuthusamy analysisoftheprogressivesamplingbasedapproachusingreallifedatasets
_version_ 1717770687794380800